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ABSTRACT 
System dynamics models are often constructed to improve system performance by identifying and modifying 

feedback mechanisms that drive system behavior. Once identified, these feedback mechanisms can be used 

to design and test policies for system performance improvement. A preliminary step in developing policies 

is the identification of high leverage parameters and structures, the influential model sections that drive 

system behavior. The current work clarifies and extends the use of statistical screening (Ford and Flynn, 

2005) as a model analysis tool with a six step process that identifies specific model sections for further 

analysis and development. The work also presents a method that clarifies the results of model analysis with 

statistical screening to practicing managers. Example application to three models, including the tipping 

point model (Taylor and Ford 2006, 2007) Bass diffusion (Sterman 2000), and World3 model (Meadows et 

al. 1974), illustrate the use of the tool and method. Statistical screening offers system dynamicists a user-
friendly tool that can be used to help explain how model structure drives system behavior. 
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Introduction 
System dynamicists focus on identifying feedback mechanisms within a system to offer 
explanations of system behavior (Forrester, 1961; Sterman, 2000). Once identified, these 
feedback mechanisms can be used to design and test policies for altering the system’s 
behavior. An efficient method for developing these policies is to focus on portions of the 
model that exert the greatest influence on the behavior of the variable or variables of 
interest, i.e. the high leverage parameters and structures. Changes in high leverage 
parameters and structures can shift feedback loop dominance and thereby dramatically 
alter system behavior.  
 
Model analysis methods for identifying high leverage parameters and structures have 
seen increased attention from researchers in recent years. Ford (1999b) describes a 
behavioral model analysis, Mojtahedzadeh et al. (2004) describes the pathway 
participation method, and Kampmann and Oliva (2006) and Guneralp (2006) describe 
loop eigenvalue analysis. Here we illustrate the statistical screening5 approach to linking 
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structure and behavior using the tipping point model developed by Taylor and Ford 
(2006, in press)6. The relevant portions of the tipping point model are shown in Figure 1.  
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Figure 1: Feedback in a tipping point project model (Taylor and Ford 2006) 

 
The tipping point model simulates a single development project subject to feedback 
dynamics that can create both rework of original project scope and the addition of work 
to the project beyond the original scope through ripple effects. These dynamics can create 
two very different behavior modes for projects with the same feedback structure and very 
similar characteristics7. For example, Figures 2 – 4 each show the behavior of the percent 
of the project work completed over time for 200 individual projects simulated using the 
tipping point model. For all 600 simulations the values of 13 of the 14 model input 
parameters were selected from a uniform parameter value distribution with a range of + 
20% of the base case value. The only difference among the simulations in Figures 2, 3, 
and 4 is the value of the final exogenous model parameter, the project deadline. The 
project deadline was 300 months for the simulations in Figure 2, 75 months for the 
simulations in Figure 3, and 130 months for the simulations in Figure 4. A late deadline 
allows all 200 projects to reach 100% complete (Figure 2), an early deadline prevents any 
of the projects from being completed (Figure 3), and an intermediate deadline allows 
some of the projects to reach 100% complete (Figure 4). 

                                                 
6 See Ford and Flynn (2005) and Appendices C and D for additional example applications. 
7 A more detailed description of the dynamics that drive the behavior of the tipping point model are 
available in Appendix A. Additional information on the tipping point model equations, testing, and use is 
available in Taylor and Ford (2006). 
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Figure 2: Behavior of 200 simulated projects with deadline = month 300 
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Figure 3: Behavior of 200 simulated projects with deadline = month 75 
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Figure 4: Behavior of 200 simulated projects with deadline = month 130  

 
Statistical screening examines model behavior to identify high leverage parameters that 
drive high leverage structures. Examining the behavior modes in Figures 2 – 4 reveals the 
project deadline as a high leverage parameter for project performance and the model 
structure driven by the project deadline as a potential high leverage model structure. 
Clearly this information would be valuable to the manager of such a project because a 
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bifurcation in the behavior mode of the percent complete could reflect project success or 
failure. How can a modeler identify the project deadline and other variables as high 

leverage parameters in this model?  
 
Statistical screening (Ford and Flynn, 2005) offers a simple, structured, and user-friendly 
means of identifying high leverage model parameters. Statistical screening provides rich 
analysis results by quantifying parameter influence throughout a simulation, thereby 
describing the evolution of exogenous impacts on behavior. In addition, statistical 
screening provides modelers with the objective model analysis results required to 
generate clear behavior distinctions such as those shown in Figures 2 – 4. Statistical 
screening does this by allowing a modeler to simultaneously test many model parameters.  
 
Recent work on statistical screening of system dynamics models by Ford and Flynn 
(2005) focuses on the influence of input parameter variance on behavior modes. They 
develop a method for performing statistical screening and provide example applications. 
The current work clarifies how statistical screening can also be used for model analysis 
by developing a formal method for using statistical screening to provide insight into how 
model structure drives system behavior. To illustrate its use, the method is applied to the 
tipping point model (Taylor and Ford, 2006), the Bass diffusion model (Sterman 2000) 
(Appendix C), and the World3 model (Meadows et al. 1974) (Appendix D). The work 
also demonstrates a presentation format that modelers can use to clearly describe to 
system managers how model structure drives system behavior.   
 

The Six Steps of Statistical Screening 
Statistical screening uses multiple simulations generated by varying model input 
parameters to calculate correlation coefficients that measure the direction and strength of 
the relationship between input parameters and a user defined system performance 
variable. Values of correlation coefficients vary between -1 and +1, with the polarity 
denoting the direction of impact in the same manner as casual link polarity. Parameters 
with correlation coefficients with a value of “1” are perfectly correlated with the 
performance variable, correlation coefficients of “0” indicate no correlation, and 
correlation coefficients of “-1” indicate a perfectly inverse correlation. The method 
calculates correlation coefficients for each time unit of the simulation for as many 
exogenous parameters as the user selects. This provides a time series of correlation 
coefficients for each selected exogenous variable (demonstrated next). The technical 
process of statistical screening analysis is described in Ford and Flynn (2005) and in 
Appendix B along with an example application. 
 
High leverage parameters identified by statistical screening can be used to directly design 
policies; such as optimizing the performance variable. However, this does not 
purposefully exploit the power of system dynamics to use the system’s feedback structure 
to explain the behavior. A better use of statistical screening results links them to specific 
model structures that can then be further analyzed and potentially expanded to improve 
model validity. Several system dynamics texts (Forrester, 1961; Ford, 1999a; Sterman, 
2000) discuss the importance of making high influence exogenous model parameters 
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endogenous as a means of improving system dynamics model validity. Statistical 
screening can provide a structured tool for this type of model growth and improvement. 
 
The six steps of statistical screening (SoS) described next are tools to guide and assist 
model investigation. They are not rigidly prescriptive. Nor do they cover all conditions 
and cases. As will be shown, their use requires interpretation and judgment. With these 
conditions in mind, the following six step process can be used to apply statistical 
screening to model analysis and development. 
 
1. Select a specific set of exogenous model parameters and a performance variable for 

analysis. 
2. Perform statistical screening of the model to calculate correlation coefficients for the 

selected exogenous model parameters as described in Ford and Flynn (2005) (see 
Appendix B). Plot the correlation coefficient time series in one graph and the 
behavior of the performance variable for all simulations in a second graph. 

3. Select a time period for analysis by examining time series of the performance 
parameter and the correlation coefficients. 

4. Identify the high influence parameter(s) during the selected time period as those with 
the highest magnitude correlation coefficient values. 

5. Identify high leverage model structures as those that are directly driven by the high 
influence parameter(s) identified in step 4 and impact the performance parameter. 

6. Use additional structure-behavior analysis methods (e.g. verbal reasoning, scenario 
analysis, behavioral analysis, etc.) to explain how the high leverage model structures 
identified in step 5 drive behavior. 

 
If improved model validity is desired, the modeler can expand high leverage model 
structures and make exogenous high leverage parameters endogenous.  

 

 

An Example Application: the Tipping Point Model
8
 

Step 1: Select Parameters and Performance Variable 
All fourteen model input parameters for the tipping point model were analyzed.9 “Percent 
complete” was selected as the performance variable. 

 

Step 2: Perform Statistical Screening to Generate Correlation Coefficients  

The fourteen model input parameters selected in step 1 were varied uniformly + 20% 
from base case values10. Data from the 200 simulations was downloaded into Excel® and 

                                                 
8 The analysis of the Taylor and Ford (2006) tipping point model is an example of analyzing what the 
authors consider a medium level complexity model. For an example of analyzing a simple model (Bass 
diffusion) see Appendix C. For an example of analyzing a relatively complex model (World3) see 
Appendix D. 
9 For large models with many exogenous inputs the modeler may need to analyze several subsets of 
parameters and use their judgment when selecting input parameters for analysis. See Ford (1990) for an 
example of developing a process to select relevant parameters for analysis.  
10 The variation in parameter value of +20% is selected to simplify the illustration of the method. Modelers 
should assign uncertainty to input parameter values that reflect the uncertainty in the actual system. See 
Ford (1990) for an example.  
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the correlations coefficients tabulated using the Excel® template described in Ford and 
Flynn (2005) and available at http://www.wsu.edu/~forda/CCTemplate. Figure 5 shows 
the time series of the correlation coefficients of the four parameters with the highest 
magnitude correlation coefficient values and therefore the highest leverage on percent 
complete. The shaded region of Figure 5 represents the threshold value11 for correlation 
coefficients, below which the value is assumed to be zero. Percent complete behavior for 
the same set of simulations is shown in Figure 4. 
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Figure 5: Statistical screening of the tipping point model 

 

Step 3: Select Analysis Time Period 
As previously described, a project manager might be interested in the bifurcation of the 
project’s percent complete. This occurs in the period between months 80 and 200 (Figure 
4). Therefore the period 80 - 200 was selected for analysis. 

 

Step 4: Identify High Magnitude Correlation Coefficients 

Between months 80 – 200 the parameter “project deadline” has the highest influence on 
percent complete as evidenced by it having the highest magnitude correlation coefficient 
value over the time period. 

 

Step 5: Connect High Magnitude Correlation Coefficients with Model Structure 

An examination of Figure 1 shows the parameter “project deadline,” which is identified 
as a high leverage model structure between months 80 – 200, directly impacts the 
schedule pressure loop (R2). 

                                                 
11 The threshold range of [-0.2, 0.2] was selected based on the observed correlation coefficient value of 
dummy variables not connected to the model structure. This threshold range is supported by Table A 11(i): 
“The 10%, 5%, 2%, and 1% Two-Tailed Significance Levels of the Correlation Coefficient” in Snedecor 
and Cochran (1980) and Table V.A.: “Values of the Correlation Coefficient for Different Levels of 
Significance” in Fisher (1954) for a 95% confidence level and 200 samples.  
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Step 6: Additional Analysis
12 

Manual feedback loop analysis is chosen here to link structure and behavior. The 
schedule pressure loop (R2) impacts percent complete by altering the level of rework on a 
project. The “fraction of work requiring change” determines how much work is 
completed correctly and released or completed incorrectly and must be reworked (and 
add work to the project backlog due to ripple effects). Schedule pressure can increase the 
amount of rework on a project by increasing the “fraction of work requiring change.” 
Increasing the value of the “fraction of work requiring change” strengthens the ripple 
effect loop (R1) and weakens the project progress loop (B1). The relative strengths of 
loops B1 and R1 can dramatically alter project percent complete. This is because, if the 
“fraction of work requiring change” increases past the tipping point, the model’s 
feedback loop dominance shifts from the project progress loop (B1) to the ripple effect 
loop (R1) and the percent complete switches from steadily increasing to steadily 
decreasing (Figure 4). The negative impact of schedule pressure as described here is 
consistent with the results of Nepal et al. (2006).13  
 
The feedback simplicity of the core of the tipping point model provides the basis for a 
clear example of the application of the six steps of statistical screening.14 With additional 
judgments the steps can be applied to larger and more complex models. 
 
 

Clarifying Statistical Screening Results 
The statistical screening results shown in Figure 5 paint a dynamic picture of how 
parameters in the tipping point model influence the behavior of a simulated project. 
However, the concept of a correlation coefficient is somewhat abstract and may not be 
easily or universally understood by practicing managers. In addition, the explanation of 
performance offered by verbal reasoning (step 6) may not be clear to a manager that is 
unfamiliar with system feedback. This challenges the system dynamicist to present the 
impact of high leverage parameters (e.g. project deadline), and subsequently the high 
leverage structures (e.g. the schedule pressure feedback mechanism), on performance in a 
manner that can be clearly understood by a manager.  
 
One solution to this issue demonstrated by McKay et al. (1999) is to use the behavior 
mode traces of multiple project simulations to illustrate the importance of high leverage 
parameters on performance instead of correlation coefficients. Using the six step process 
presented here and the tipping point model example the modeler could identify the 
project deadline and schedule pressure as key drivers of percent complete. The modeler 

                                                 
12 The final step of the six step process is where the modeler is required to exercise most of their judgment 
in analyzing the behavior of the system. Verbal reasoning is used here. This judgment can be reinforced by 
applying other, potentially more rigorous analysis methods. 
13 The verbal reasoning analysis presented here is supported by the results of behavioral analysis (Ford 
1999b) of the tipping point model. See Taylor et al. (2005) for details on the behavioral analysis of the 
tipping point model. 
14 Performing the six step statistical screening process on the tipping point model took the author 
approximately 30 minutes. Analysis times will vary depending upon several factors including model 
complexity and user experience. 
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could then illustrate the importance of the project deadline and schedule pressure to the 
project manager by showing Figures 2 – 4 to the project manager. Figures 2 – 4 illustrate 
that, regardless of variation in the 13 other model parameters within their + 20% range, a 
change in the project deadline (and therefore a change in the amount of schedule 
pressure) can dramatically alter the performance of a project. This presents the results of 
the analysis in a form that the project manager is familiar with, project progress as 
tracked by percent complete. This makes clear how an overly aggressive deadline (Figure 
3) can lead to poor project performance while a more relaxed deadline (Figure 2) can 
reduce the chance of project failure due to schedule pressure. The project manager could 
use this information when setting a project deadline to manage the risk of schedule 
pressure on the project. 

 

 

Discussion and Conclusions 
The current work extends and clarifies the use of statistical screening as a model analysis 
tool by presenting a six step process for using statistical screening to provide insight into 
how model structure drives system behavior. The process was demonstrated by analyzing 
the bifurcated behavior produced by the tipping point model (Taylor and Ford, 2006). 
The process has also been used to analyze the Bass diffusion model (Appendix C) and the 
World3 model (Appendix D) and returned useful results. The process facilitates improved 
model understanding by providing a structured method to analyze multiple model 
parameters over the course of a simulation. The results of the analysis can serve as a 
stepping off point for additional analysis methods and model development. 
 
The current work also suggests a presentation method that makes clear the results of 
statistical screening analysis to system managers. The same method has proven useful in 
discussion of the land use policies that influence Sage-grouse populations in central 
Washington (Beall et al., 2006). This presentation method allowed the Sage-grouse team 
to more easily explain how the ecological system affected the population of Sage-grouse 
to wildlife management professionals. The advantage offered by this presentation method 
may be applicable to any model in which changing the value of a single parameter causes 
a dramatic change in the behavior mode of a system performance variable. 
 
Statistical screening’s simple-to-use-and-understand format make it potentially very 
useful to system dynamics modelers. When used in conjunction with the process 
described here statistical screening offers an easy and objective method to efficiently 
identify high leverage model parameters and structures. This information can then be 
used to improve model understanding and to grow and improve system dynamics models.   
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Appendix A: Tipping Point Model (Taylor and Ford 2006) 

 
The tipping point model used to demonstrate the six steps of statistical screening is 
described in Taylor and Ford (2006, in press). The tipping point model is useful for 
demonstrating the six steps of statistical screening because the model is relatively simple, 
the basic structure of the model has been well established (Cooper 1993; Ford and 
Sterman 2003a,b; Joglekar and Ford 2005; Taylor and Ford 2006; Lee et al. 2007 among 
others), and the model is capable of producing two unambiguous behavior modes. The 
ability to produce two unambiguous behavior modes is particularly useful in 
demonstrating the results presentation method described by McKay et al (1999). 
 
The tipping point model is purposefully simple relative to actual practice to expose the 
relationships between tipping point structures, project behavior modes, and management. 
Therefore, although many development processes and features of project participants 
interact to determine project performance, only those features that describe a particular 
tipping point structure, project management policies, and the fundamental processes they 
impact are included. For example, resource productivities are assumed fixed, work 
backlogs are assumed to be available for development, and the model assumes that work 
packages are completed in accordance with schedule requirements (i.e. work packages on 
the critical path are completed first) but does not identify specific critical path work 
packages. The literature cited above investigates the impacts of these and other factors 
influencing performance. The complete model with documentation is also available from 
the authors or at http://ceprofs.tamu.edu/dford/.  
 
The model consists of three sectors: a workflow sector (Figure A-1), a resource allocation 
sector, and a schedule pressure sector. The workflow sector is based on Ford and 
Sterman’s (1998) structure of a development project value chain with a rework cycle. The 
same or similar structures have been used extensively to investigate project dynamics and 
management issues (e.g. Cooper 1993, 1994; Ford and Sterman, 2003a,b; Joglekar and 
Ford 2005; Lee et al. 2005; Lee et al. 2007). Work is initially completed and moves from 
the initial completion backlog (IC backlog) to the backlog of work requiring quality 
assurance (QA backlog). Work that passes quality assurance is approved and adds to the 
stock of work that has been approved and released (Work Released). Work discovered to 
require change (either through errors, omissions, or regulation changes) moves into the 
backlog of work known to require rework (RW Backlog). The IC backlog can also be 
increased by work created by ripple effects. The strength of ripple effects describes the 
interdependence of project work packages. Completing rework returns work packages to 
the QA backlog for checking again because rework can reveal previously hidden, or 
create new rework requirements. The initial completion, quality assurance, and rework 
flows are constrained by either development processes or available resources. Resources 
are allocated to the three development activities proportional to demand in the resource 
allocation sector. Each proportion is the size of the activity’s backlog compared to the 
project backlog (IC backlog + QA backlog + Rework backlog). 
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Feedback Loop Legend (partial listing) 
B1: Project progresses through approval of checked work 
R1: Ripple effect increases initial completion, quality assurance, rework, and ripple effects 
R2: Schedule pressure increases project rework, ripple effects, project work, and schedule pressure 
 

Figure A-1: Work flows through a project with a tipping point structure15 

 
The feedback loops shown in Figure A-1 can explain tipping point dynamics. Balancing 
feedback loop B1 (Project Progress) withdraws work from the rework cycle. The QA 
backlog increases due to initial completion and rework, causing the QA rate to increase 
as resources are shifted to quality assurance. This increases the work approval rate, 
reducing the QA backlog and increasing the work released stock. This balancing loop 
drives the project to completion as the backlogs that represent the remaining project work 
decline to zero. In the absence of ripple effects, B1 completes a project as quickly as 
processes and resources allow. Reinforcing loop R1 (Ripple Effect) adds work to the 
project through the discovery of rework and ripple effects. Increasing the QA backlog 
increases the QA rate, increasing the rate at which work is discovered to require rework. 
This increases ripple effects, adding work to the IC backlog. As the IC backlog increases 
resources are shifted to initial completion, the initial completion work rate increases, and 
the QA backlog increases further. In the absence of loop B1 (e.g. if all work required 
rework) loop R1 increases the rework and project backlog infinitely, thereby degrading 
project performance to eventual failure. 
 

                                                 
15 The model structure shown in Figure A-1is a more detailed representation of the structure shown in 
Figure 1. The “project backlog” stock in Figure 1 is represented by the dashed box in Figure A-1. 
 

Project 

Backlog 
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Feedback loops B1 and R1 create a tipping point based on the approval and addition of 
work to the project backlog. As long as loop B1 dominates the project progresses (albeit 
perhaps very slowly), the total project backlog (represented by the dashed box in Figure 
A-1) decreases, and the percent complete increases. However, if loop R1 dominates, the 
project backlog increases and the percent complete decreases. At the tipping point the 
rate of work being added to and the rate of work being removed from the project backlog 
are equal. When work is being completed faster then new work is being added (ripple 
effect rate < approve work rate) the percent complete increases. When work is being 
added faster then it is being completed (ripple effect rate > approve work rate) the percent 
complete decreases.  
 
A third feedback loop is needed to endogenously shift feedback loop dominance between 
loops B1 and R1. Schedule pressure can create this third feedback loop. Schedule 
pressure is a common side effect of development projects that can lower development 
quality (Park et al. 2004; Nepal et al. 2006), increase rework (Cooper 1994; Graham 
2000; Ford and Sterman 2003b; Nepal et al. 2006), and thereby have important impacts 
on performance. Schedule pressure can also have beneficial impacts which can be 
modeled with additional feedback loops (see Ford 1995 for examples), but the current 
work models only the net effects of schedule pressure which are assumed to be negative. 
This assumption is supported by the findings of Nepal et al. (2006). Schedule pressure 
increases with the time required to complete the project backlog and decreases with the 
time available to complete the project backlog. As a project approaches a deadline, 
schedule pressure increases (ceteris paribus) and developers increase the pace of work to 
meet the deadline. This increases the risk of work being completed incorrectly (i.e. 
increases the fraction of work requiring rework). Therefore, reinforcing Loop R2 
(Schedule Pressure) can increase the strength of the ripple effect loop (R1) by increasing 
the rework fraction. The resulting increase in ripple effects, the IC backlog, and thereby 
the project’s backlog increases the time required to complete the project, increasing 
schedule pressure further. Through loop R2 schedule pressure can push a project initially 
dominated by the Project Progress loop (B1) across its tipping point into dominance by 
the Ripple Effect loop (R1) and toward failure. 
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Appendix B: Statistical Screening 
Statistical screening (step 2 of the six step process) can be performed as follows: 

2-A. Select uncertain model input parameters and a single performance variable for 
analysis. 

2-B. Specify a distribution (e.g. uniform with maximum and minimum values) for 
each uncertain model input identified in step 1. 

2-C. Simulate using combinations of values from the distributions specified in step 
2. For example, Vensim’s® “Partial Simulation Tool” can be used to perform a 
Latin Hypercube sampling of values. Save the analysis results, for example in a 
Vensim® “Sensitivity Save List” file. 

2-D. Export the results of the analysis performed in step 3 to an Excell® spreadsheet, 
such as by saving to a .tab file using Vensim’s® “Export Dataset” tool. 

2-E. Download one of the available Excel® templates from 
http://www.wsu.edu/~forda/CCTemplate.16  

2-F. Import the data saved in step 4 to the selected Excel® template. Once the data 
is imported into the Excel® template click on the worksheet tab “CC Graph” to 
view the correlation coefficients for the model analysis. 

 

Example Application 
An example of the technical process for calculating correlation coefficients using Vensim 
and Excel as outlined in Appendix B is shown here. For this example the tipping point 
model described in Appendix A is analyzed. 
 

Steps 2A and 2B: Select uncertain model parameters and uncertainty 

The fourteen model input parameters for the tipping point model were selected as 
uncertain model inputs. The parameters and their associated uncertainty ranges are shown 
in Table B-1. The performance variable selected for the analysis was percent complete. 

                                                 
16 The templates are file named by the (number of uncertain inputs)x(the number of simulations)x(the 
number of save periods). For example, “CC template 6x50x20.xls” is a template that can be used for 6 
uncertain model inputs, 50 separate simulations, and 20 save periods. Depending upon the number of 
inputs, simulations, and save periods, analysis of a particular model may require simple modification to the 
structure of one of the basic Excel® template.  
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Table B-1: Exogenous parameters in the tipping point model and their ranges 

Exogenous Variable Range Distribution 

base frac disc to require rework [0.24, 0.36] Uniform 

base ripple effect strength [0.8, 1.2] Uniform  

project deadline [240, 360] Uniform  

scope initial [28000, 42000] Uniform  

sensitivity to schedule pressure [0.32, 0.48] Uniform  

total staff [1200, 1800] Uniform  

staff adjustment time [3.2, 4.8] Uniform  

IC staff productivity [0.8, 1.2] Uniform  

RW staff productivity [0.8, 1.2] Uniform  

QA staff productivity [0.8, 1.2] Uniform  

minimum IC duration [0.8, 1.2] Uniform  

minimum RW duration [0.8, 1.2] Uniform  

minimum QA duration [0.8, 1.2] Uniform  

release productivity adjustment [0.4, 0.6] Uniform  

 

Step 2-C: Generate multiple simulations 

Vensim’s® “Sensitivity Simulation” tool (located under “Model” > “Partial Simulation” 
> “Sensitivity” in the Vensim® main tool bar) can be used to simulate this uncertainty in 
the tipping point model. Figure B-1 shows the “setup” window for assigning ranges of 
uncertainty (note these are the same variable and uncertainty ranges shown in Table B-1). 
We ask for 200 simulations, using Latin Hypercube Sampling (LHS) to select the values 
of the 14 inputs in each of the 200 runs. We assign the uniform random distribution to all 
inputs. We ask Vensim® to store the results of the 200 runs in the .vsc file named at the 
top of the window. Clicking on “OK” prompts Vensim® to ask for a .lst file, a file with a 
list of variables to be saved (Figure B-2). The .lst file should also contain the names of 
the 14 variables listed in Table B-1 as well as the performance variable percent complete. 
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Figure B-1: Sensitivity analysis control window 

 
 

 
Figure B-2: List file control screen 

 
Once the .vsc and .lst files are loaded enter the name of the .vdf file in the “run name” 
box shown in Figure B-3 to store the results of the sensitivity analysis and click the 
“sensitivity” button to run the analysis. 
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Figure B-3: Simulation control screen 

 

Step 2-D: Export multiple simulation data 

Once the sensitivity runs are completed click on “Model” > “Export Data Set” on the 
Vensim® main tool bar. Vensim® will prompt for the .vdf file to export. We select the 
file from our sensitivity simulation (TippingPoint.vdf) and the box shown in Figure B-4 
will appear. Enter a .tab file name into the “Export to . . .” box as shown in Figure B-4. 
Once the .tab file is named click the “OK” button to export the results to the .tab file. 
 

 
Figure B-4: Export data control box 

 
 

Step 2-E and 2-F: Calculate correlation coefficients 

To calculate the correlation coefficients, we export the 200 simulations to a spreadsheet 
template designed to receive the values assigned to 14 uncertain inputs in the 200 
simulations with results for the key output saved in 200 time periods. This is a modified 
spreadsheet from one of several templates (see B-2) that may be downloaded from 
http://www.wsu.edu/~forda/CCTemplate.   

Table B-2: Excel templates available for statistical screening 

File Name Sensitivity Results for 

CC Template 6x50x20.xls 6 uncertain inputs; 50 runs; 20 save periods 

CC Template 6x50x40.xls 6 uncertain inputs; 50 runs; 40 save periods 

CC Template 14x50x40.xls 14 uncertain inputs; 50 runs; 40 save periods 
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Once the selected spreadsheet is open we click on “Data” > “Import External Data” > 
“Import Data” as shown in Figure B-5. Once the “Select Data Source” box opens, we 
select the TippingPoint.tab file created in step 4. When the file is opened the spreadsheet 
will open the “Text Import Wizard.” At this stage, we click on next, click on next again, 
then finish, and agree to have the data go to cell $A$3 (The green cell highlighted in the 
spreadsheet). The results of the sensitivity analysis will appear in the boxed cells, and the 
time graphs of the correlation coefficients will on the worksheet tab “CC Graph.” The CC 
Graph for the tipping point analysis performed here is similar to the plot shown in Figure 
5.  

 
Figure B-5: Importing .tab data into Excel® 
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Appendix C: Analysis of the Bass Diffusion Model 
This appendix presents the Bass diffusion model (Figure C-1) analysis results. For a full 
description of the model see Sterman (2000). 

potential

adopters
adopters

adoption rate

+ +

contact rate

total population

adoption fraction

+ +

-

B R

initial potential

adopters
initial adopters

 
Figure C-1: Bass diffusion model (Sterman 2000) 

 

The adoption rate equation is: 
adoption rate = contact rate*adoption fraction*potential adopters*[adopters/total 

population]  
 

Step 1: Select Parameters and Performance Variable 
All four model input parameters for the Bass diffusion model were analyzed (Table C-1). 
“adoptors” was selected as the performance variable. 

Table C-1: Exogenous Bass diffusion model parameters and their range 

Exogenous Variable Range 

initial potential adopters  [495, 1485] 

initial adopters [5, 15] 

contact rate [0.25, 0.75] 

adoption fraction [0.25, 0.75] 

 

Step 2: Perform Statistical Screening to Generate Correlation Coefficients  

The four model input parameters selected in step 1 were varied uniformly + 50% from 
base case values17. Data from the 200 simulations was downloaded into Excel® and the 
correlations coefficients tabulated using the Excel® template described in Ford and Flynn 
(2005) and available at http://www.wsu.edu/~forda/CCTemplate. The number of adopters 
for each of the 200 simulations is shown in Figure C-2. Figure C-3 shows the time series 
of the correlation coefficients of the four parameters. The shaded region of Figure C-3 

                                                 
17 The variation in parameter value of +50% is selected to simplify the illustration of the method. Modelers 
should assign uncertainty to input parameter values that reflect the uncertainty in the actual system. See 
Ford (1990) for an example.  
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represents the threshold value18 for correlation coefficients, below which the value is 
assumed to be zero. 
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Figure C-2: Adopters for 200 simulations 

 
 

                                                 
18 The threshold range of [-0.2, 0.2] was selected based on the observed correlation coefficient value of 
dummy variables not connected to the model structure. This threshold range is supported by Table A 11(i): 
“The 10%, 5%, 2%, and 1% Two-Tailed Significance Levels of the Correlation Coefficient” in Snedecor 
and Cochran (1980) and Table V.A.: “Values of the Correlation Coefficient for Different Levels of 
Significance” in Fisher (1954) for a 95% confidence level and 200 samples.  
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Figure C-3: Correlation coefficients for Bass diffusion model 

 

 

Step 3: Select Analysis Time Period 
Suppose you are interested in why the number of adopters of a new product peaks after a 
couple of years. Therefore you select months 35 – 100 for your analysis period.    

 

Step 4: Identify High Magnitude Correlation Coefficients 

Between months 35 – 100 the parameter “initial potential adopters” has the highest 
influence on the number of adopters of the new product as evidenced by it having the 
highest magnitude correlation coefficient value over the time period. 

 

Step 5: Connect High Magnitude Correlation Coefficients with Model Structure 

An examination of Figure C-1 shows the parameter “initial potential adopters,” which is 
identified as a high leverage model structure between months 35 – 100, directly impacts 
the variable “total population.” 

 

Step 6: Additional Analysis 
Verbal reasoning is used to link structure and behavior. Figure C-1 shows that the 
number of adopters is increased or decreased by the adoption rate. Since the number of 
adopters in Figure C-2 begins to level off somewhere between months 25-50 for most of 
the 200 simulations the adoption rate during this time must approach zero. The high 
leverage parameter “initial potential adopters”19 impacts the adoption rate through the 
total population and the number of potential adopters by constraining the adoption rate 

                                                 
19 The presentation method described by McKay et al. (1999) and presented earlier in this work is not used 
to present the results of the Bass Diffusion model because the Bass Diffusion model produces a single 
behavior mode (S-shaped growth). The McKay et al. (1999) presentation method is most effective when a 
model produces two or more unambiguous behavior modes.  
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through the balancing feedback loop. The total population remains constant throughout 
the course of the simulation and therefore cannot cause the adoption rate to approach zero 
during a simulation. The number of potential adopters does change throughout the course 
of the simulation. As the simulation progressed the number of potential adopters 
decreases until the stock is emptied. At this point, there are no potential adopters left to 
acquire the new product. Therefore, the adoption rate approaches zero after a number of 
years and the number of product adopters levels off. 
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Appendix D: Analysis of the World3 Model 
This appendix presents the statistical screening analysis results of the World3 model. The 
World3 model used for this analysis is the “WRLD3-03” sample model available in 
Vensim. The reference behavior mode analyzed here is the “reference run” described on 
pages 499-502 of Meadows et al (1974). The World3 model is comprised of five model 
sectors (Figure D-1) population, capital, agriculture, nonrenewable resources, and 
persistent pollution (Meadows et al. 1974). The reference behavior mode is show in 
Figure D-2. A more detailed description of the World3 model is available in Meadows et 
al. (1972), Meadows and Meadows (1973), and Meadows et al. (1974). 

 
Figure D-1: Interactions between sectors in the World3 model20 

 
 

                                                 
20 This diagram is Figure 1-2 on page 11 of Dynamics of Growth in a Finite World by Meadows et al. 
(1974). 
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Figure D-2: Population reference behavior mode 

 

Step 1: Select Parameters and Performance Variable 
 The World3 model has 72 exogenous model parameters that can reasonably be uncertain. 
All 72 parameters were analyzed using statistical screening. The correlation coefficients 
for 64 parameters were located between -0.1 and 0.1 and were thus deemed insignificant 
in the explanation of the system’s behavior21.  The analysis of the other eight parameters 
is shown in Table D-1. “Population” was selected as the performance variable. 

Table D-1: Exogenous World3 parameters and their range 

Exogenous Variable Range Distribution 

average life of industrial capital 1 [12.6, 15.4] Uniform 

desired completed family size normal [3.42, 4.18] Uniform  

fraction of industrial output allocated to consumption constant 1 [0.39, 0.47] Uniform  

industrial capital output ratio 1 [2.7, 3.3] Uniform  

initial population 0 to 14 [5.85, 7.15]*  Uniform  

initial population 15 to 44 [6.3, 7.7]* Uniform  

life expectancy normal [25.2, 30.8] Uniform  

reproductive lifetime [27, 23] Uniform  

* in 100,000,000 of people 

 

 

Step 2: Perform Statistical Screening to Generate Correlation Coefficients  

The eight model input parameters selected in step 1 were varied uniformly + 10% from 
reference run values22. Data from the 1,000 simulations was downloaded into Excel® and 
the correlation coefficients tabulated using the Excel® template described in Ford and 

                                                 
21 The threshold range of [-0.1, 0.1] is supported by Table A 11(i): “The 10%, 5%, 2%, and 1% Two-Tailed 
Significance Levels of the Correlation Coefficient” in Snedecor and Cochran (1980) and Table V.A.: 
“Values of the Correlation Coefficient for Different Levels of Significance” in Fisher (1954) for a 95% 
confidence level and 1,000 samples. 
22 The variation in parameter value of 10% is selected to simplify the illustration of the method. Modelers 
should assign uncertainty to input parameter values that reflect the uncertainty in the actual system. See 
Ford (1990) for an example.  
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Flynn (2005) and available at http://www.wsu.edu/~forda/CCTemplate. The human 
population behavior for 100 of the 1,000 simulations is shown in Figure D-3 (others not 
shown for clarity). Figure D-4 shows the time series of the correlation coefficients of the 
eight parameters. The shaded region of represents the threshold value for correlation 
coefficients, below which the value is assumed to be zero.  
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Figure D-3: Human population simulations (100 of 1,000 simulations) 
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Figure D-4: Correlation coefficients for eight parameters in the World3 model23 

 
 

                                                 
23 The correlation coefficient graph shown in Figure D-4 is nearly identical to the results of a similar 
analysis of the World3 model performed by Ford and Flynn (2005), Figure 16. 
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Step 3: Select Analysis Time Period 
The years 2025 – 2100 were selected as the analysis period to investigate the decline in 
population (Figure D-2) that occurs during the second half of the simulation.    

 

Step 4: Identify High Magnitude Correlation Coefficients 

Between years 2025 – 2100 the parameters “reproductive lifetime,” “desired completed 
family size normal,” “fraction of industrial output allocated to consumption constant 1,” 
and “industrial capital output ratio 1” have the highest influence on the population as 
evidenced their highest magnitude correlation coefficients over the analysis period. 

 

Step 5: Connect High Magnitude Correlation Coefficients with Model Structure 

The parameters “reproductive lifetime” (RL) and “desired completed family size normal” 
(DCFN) are contained in the population model sector. The reproductive lifetime is used 
to determine the birth rate (Meadows et al. 1974).  
 
The parameters “fraction of industrial output allocated to consumption constant 1” 
(FIOAC1) and “industrial capital output ratio 1” (ICOR1) are contained in the capital 
model sector. The fraction of industrial output allocated to consumption constant 1 is 
used to determine the reinvestment of capital back into industrial activities. The industrial 
capital output ratio 1 is one of the parameters used to determine industrial output. 

 

Step 6: Additional Analysis 
To evaluate statistical screening as a model analysis tool the results of the screening 
analysis of the reference behavior mode (Figure D-2) is compared with the analysis 
reference case analysis described in Meadows et al. (1974) who noted, “Population and 
capital growth grow past their sustainable physical limits and then return to a pre-
industrial level of development. Growth is halted in this run through the effects of 
nonrenewable resource depletion” (Meadows et al. 1974, p. 500). This explanation 
appears to contradict the statistical screening results (Figure D-4) since the parameter 
“initial nonrenewable resources” was not found to be significant during the simulation.  
 
Verbal reasoning and structural analysis is used to link structure and behavior. The 
performance variable population can be directly impacted by several sections of the 
model. A dramatic increase in birth rate or death rate will, over time, greatly increase or 
decrease the population. The parameters RL and DCFN are located in the same model 
sector as the performance variable and are closely linked to its performance by impacting 
the birth rate.  The DCFN reflects how society views the “ideal” family size. The larger 
the desired family size (ceteris paribus) the greater the population. This is reflected by the 
positive correlation coefficient for the DCFN (Figure D-4) during the analysis period.  
 
The parameter RL reflects the number of years that females are able to reproduce. This 
parameter is directly and positively linked to the birth rate. To understand how this 
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parameter impacts the birth rate it is necessary to look at how the parameter is used in the 
World3 model. The model equation24 for births is: 
 
births = (total fertility * population 15 to 44 * 0.5) / reproductive lifetime      3025 
where: 
 births = births per year [person/year] 
 total fertility = total fertility [dimensionless] 
 population 15 to 44 = population, age 15-44 [person] 
 reproductive lifetime = number of years a female can give birth [years] 
 
Given its location in the denominator of equation 30, the RL parameter regulates how 
quickly the population produces children. A higher RL value allows the population to 
space the birth of children farther apart. A lower RL value causes the population to wait a 
shorter period between child births. A lower RL will cause the population to grow more 
rapidly and overshoot sustainable levels. This is caused by the overshot population 
destroying capital and nonrenewable resources. This rapid population growth reduces the 
industrial output per capita (Figure D-5, Loop B-1). This reduces the capital available for 
consumption by increasing the capital required for reinvestment in industry (Figure D-5, 
Loop B2). This depletes the natural resources, thereby reducing industrial output (Figure 
D-5, Loop B3). This relationship is consistent with the negative correlation coefficient for 
IR in Figure D-3 during the analysis period. 
 
The behavior of the parameters “fraction of industrial output allocated to consumption” 
(FIOAC1) and “industrial capital output ratio” (ICOR1) is particularly interesting. The 
evolution of the correlation coefficients for the two parameters is very similar throughout 
the entire simulation. At year 2025 the parameters are in the process of changing from a 
high magnitude negative correlation coefficient to a high magnitude positive correlation 
coefficient (Figure D-4). To understand how the FIOAC1 and ICOR1 impact the model it 
is necessary to examine the how the parameters are used in the surrounding model 
equations. A simplified view of one piece of the capital model structure is shown in 
Figure D-5. As shown in Figure D-1, feedback exists between the population and capital 
sectors. As described in Meadows et al. (1974) the feedback between these sectors drives 
the exponential growth in the population during the first 100 years of the simulation. This 
linkage allows us to analyze the impact of the parameters FIOAC1 and ICOR1 on the 
population by analyzing their impact on the capital sector, specifically the variable 
“industrial output per capita.”26   

                                                 
24 Equation 30 disregards the population equilibrium function in the model that sets the birth rate = death 
rate at year 4,000. Since the simulation period is from the year 1900 to 2100 the population equilibrium 
function is not activated during the simulation. The births in equation 30 assumes the distribution of births 
is equal across the reproductive lifetime (i.e. from age 15 to 44). The 0.5 in equation 30 assumes that half 
the population between the ages of 15-44 are female (Meadows et al. 1974). 
25 The equation number to the right of each equation (e.g. “30”) references the World3 model equation 
number in Meadows et al. (1974) Appendix A. 
26 The variable “industrial output per capita” was selected because it is a key link between the capital sector 
and the population sector. See Meadows et al. (1974) for more detail. 
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Figure D-5: A simplified view of the industrial capital sector. 

 

Impact of FIOAC1 on Industrial Output per Capita 

The FIOAC1 is one of the model parameters that sets the value of the variable “fraction 
of industrial output allocated to consumption constant” which is used to set the value of 
the “fraction of industrial output allocated to consumption.” The “fraction of industrial 
output allocated to consumption” is one of the parameters that determines the “fraction of 
industrial output allocated to investment:” 
 
fraction of industrial output allocated to investment = 1  
             - fraction of industrial output allocated to agriculture  
             - fraction of industrial output allocated to services  
             - fraction of industrial output allocated to consumption         56 
 
where: 
 fraction of industrial output allocated to investment [dimensionless] 
 fraction of industrial output allocated to agriculture [dimensionless] 
            fraction of industrial output allocated to services [dimensionless] 
            fraction of industrial output allocated to consumption [dimensionless] 
 
Equation 56 shows that a higher fraction of industrial output allocated to consumption 
reduces the fraction of industrial capital allocated to investment. This reduces the 
industrial capital, which reduces the industrial output, and reduces the industrial output 
per capita (Figure D-5, Loop B2).  
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Impact of ICOR1 on Industrial Output per Capita 

As with FIOCA1, the ICOR1 parameter impacts industrial output per capita. Where the 
FIOCA1 regulates the fraction of industrial capital invested in industrial output the 
ICOR1 meters the impact of nonrenewable resources on industrial output. This is better 
understood by examining the World3 model equation for the industrial output. 
 
industrial output = ((( industrial capital )) * (1 
             - fraction of industrial capital allocated to obtaining resources))  
             * (capacity utilization fraction)  
             / industrial capital output ratio             50 
 
where: 
 industrial output [dollars/year] 
 industrial capital [dollars] 
 fraction of industrial capital allocated to obtaining resources [dimensionless] 
 capacity utilization fraction [dimensionless] 
 industrial capital output ratio [years] 
 
 
As shown in Figure D-5 the parameter ICOR1 is used to calculate the industrial capital 
output ratio (ICOR). Equation 50 reveals that the ICOR regulates how fast industrial 
output changes due to changes in industrial capital, utilization, and nonrenewable 
resources. Thus, the ICOR partially regulates the rate at which the industrial output per 
capita changes. 
 
A useful way to think about the impact of ICOR on the system and to resolve the 
apparent inconsistency between Meadows et al. (1974) analysis and the statistical 
screening results is to view the ICOR as sensitivity control for how the depletion of 
nonrenewable resources impacts industrial output (and ultimately the population). If 
industrial output was completely insensitive to the depletion of nonrenewable resources, 
nonrenewable resources could be completely depleted and industrial output and 
population would be unaffected. However, if industrial output was extremely sensitive to 
the depletion of nonrenewable resources, a small reduction in nonrenewable resources 
would dramatically reduce industrial output and population. Thus, the ICOR1 regulates 
the ability of nonrenewable resource depletion to impact industrial output and population. 
This reconciles the apparent contradiction between the statistical screening results 
presented in Figure D-4 and the conclusion of Meadows et al. (1974) that the depletion of 
nonrenewable resources causes the population to decline in the reference case (Figure D-
2).  
 

Discussion of Polarity Change for FIOAC1 and ICOR1 Correlation Coefficients. 
One question raised by the World3 statistical screening analysis results is why the 
polarity of the correlation coefficients for the FIOAC1 and the ICOR1 change from 
negative to positive during the course of the simulation. One explanation for the polarity 
change is the overshoot of population above sustainable levels in the reference simulation 
as described in Meadows et al. (1974). Between the years 1900 to 2025 the correlation 
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coefficients for the FIOAC1 and ICOR1 are negative. During this time smaller values of 
FIOAC1 and ICOR1 result in a larger population. As previously discussed the FIOAC1 
and ICOR1 regulate the growth of industrial output. Thus, small values for these 
parameters allowed faster changes in the industrial output. This allowed the population to 
grow unconstrained by capital limitations during this time period. 
 
However, as described in Meadows et al. (1974), eventually the exponential growth of 
the population reaches unsustainable levels the population growth is constrained by the 
resource sector. During this time (years 2025 – 2100) the correlation coefficients for the 
FIOAC1 and the ICOR1 are positive. Thus high values of FIOAC1 and ICOR1 result in 
higher populations. The high values of these parameters allow reduce the speed at which 
the depletion of nonrenewable resources can reduce the population. 
 

Conclusions from the World3 Analysis 
The World3 model analysis illustrates several points about statistical screening. First, the 
analysis illustrates the usefulness of the six step statistical screening analysis method in 
analyzing complex system dynamics models. The first author who performed the analysis 
had no knowledge of the structure, feedback dynamics, and results of the World3 model 
prior to the analysis. The World3 model has roughly 150 equations and over 600 pages of 
documentation (Meadows et al 1974). Yet, the six step process allowed that author to 
focus rather quickly27 on the industrial output/industrial capital feedback loop as a key 
driver of world population. Second, the results of the analysis are consistent with 
previously published model analysis (e.g. Meadows et al. 1974). And finally, the World3 
analysis shows that although statistical screening is a useful tool to aid a system 
dynamicist in model analysis, the results require interpretation and thought by the user.   
  
 
 
 
 
 

                                                 
27 The first five steps of the six step statistical screening analysis process took approximately 10 hours to 
perform. The longer analysis time required as opposed to the tipping point model (30 minutes) is due to the 
time required to analyze all 72 uncertain model parameters. 


