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Abstract: 
 This paper examines the rising competition between computational and dynamic 
conceptualizations of complexity in economics.  While computable economics views the 
complexity as something rigorously defined based on concepts from probability, 
information, and computability criteria, dynamic complexity is based on whether a 
system endogenously and deterministically generates erratically dynamic behavior of 
certain kinds.  On such behavior is the phenomenon of emergence, the appearance of new 
forms or structures at higher levels of a system from processes occurring at lower levels.  
While the two concepts can overlap, they represent substantially different perspectives.  
A competition of sorts between them may become more important as new, computerized 
market systems emerge and evolve to higher levels of complexity of both kinds. 
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I.  INTRODUCTION 

 As reported by Horgan (1997, p. 305), Seth Lloyd has gathered at least 45 

definitions of complexity.  Rosser (1999) argued for the usefulness in studying economics 

of a definition he called dynamic complexity that was originated by Day (1994).  This is 

that a dynamical economic system fails to generate convergence to a point, a limit cycle 

or an explosion (or implosion) endogenously from its deterministic parts.  It was argued 

that nonlinearity was a necessary but not sufficient condition for this form of 

complexity,1 and that this definition constituted a suitably broad “big tent” to encompass 

the “four C’s” of cybernetics, catastrophe, chaos, and “small tent” (or heterogeneous 

agents) complexity.  Other approaches used in economics have included structural 

(Pryor, 1995; Stodder, 1995),2 hierarchical (Simon, 1962), and computational (Lewis, 

1985; Albin with Foley, 1998; Velupillai, 2000). 

 In recent years (Veluppilai, 2005a,b,c; Markose, 2005) there has been a tendency 

to argue that the latter concept is superior because of its foundation on more well-defined 

ideas, such as algorithmic complexity (Chaitin, 1987) and stochastic complexity 

(Rissanen, 1989, 2005).  These are seen as founded more deeply on work of Shannon 

(1948) and Kolmogorov (1983).  Mirowski (2006) argues that markets themselves should 

be seen as algorithms that are evolving to higher levels in a Chomskyian (1959) hierarchy 

                                                 
1 This is incorrect.  Goodwin (1947) showed such endogenous dynamic patterns in coupled linear systems 
with lags.  Similar systems were analyzed by Turing (1952) in his paper that has been viewed as the 
foundation of the theory of morphogenesis, a complexity phenomenon par excellence.  However, the 
overwhelming majority of such dynamically complex systems involve some nonlinearity, and the 
uncoupled normalized equivalent of the coupled linear system is nonlinear.. 
2 Structural complexity appears in the end to amount to “complicatedness,” which Israel (2005) argues is 
merely an epistemological concept rather than an ontological one, with “complexity” and 
“complicatedness” coming from different Latin roots (complecti, “grasp, comprehend, or embrace” and 
complicare, “fold, envelop”), even if many would confuse the concepts (including even von Neumann, 
1966).  Rosser (2004) argues that complicatedness as such poses essentially trivial epistemological 
problems, how to figure out a lot of different parts and their linkages. 
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of computational systems, especially as they increasingly are carried over computers and 

become resolved through programmed double-auction systems and the like.  McCauley 

(2004, 2005) and Israel (2005) argue that such dynamic complexity ideas as emergence 

are essentially empty and should be abandoned for either more computational-based or 

more physics-based, the latter especially relying on invariance concepts. 

 In contrast, this paper will argue that while these ideas serve useful purposes, 

dynamic complexity and such concepts as emergence are useful for understanding 

economic phenomena and are not as incoherent and undefined as has been argued.  A 

sub-theme of some of this literature, although not all of it, has been that biologically 

based models or arguments are fundamentally unsound mathematically and should be 

avoided in more analytical economics.  Instead, this paper will argue that such 

approaches can be used in conjunction with the dynamic complexity approach to explain 

emergence mathematically and that such approaches can explain certain economic 

phenomena that may not be easily explained otherwise. 

 

II.  COMPUTATIONALLY BASED ARGUMENTS 

 Velupillai (2000, pp. 199-200) summarizes the foundations of what he has labeled 

computable economics3 in the following. 

“Computability and randomness are the two basic epistemological notions 
I have used as building blocks to define computable economics.  Both of these 
notions can be put to work to formalize economic theory in effective ways.  
However, they can be made to only on the basis of two theses: the Church- 
Turing thesis, and the Kolmogorov-Chaitin-Solomonoff thesis.” 

                                                 
3 “Computable economics” was neologized by Velupillai in 1990 and is distinguished from “computational 
economics,” symbolized by the work one finds at conferences of the Association for Computational 
Economics and its journal, Computational Economics.  The former focuses more on the logical foundations 
of the use of computers in economics while the latter tends to focus more on specific applications and 
methods. 
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Church (1936) and Turing (1937) independently realized that several broad 

classes of functions could be described as “recursive” and were “calculable” 

(programmable computers had not yet been invented).  Turing (1936-37) was the first to 

realize that Gödel’s (1931) Incompleteness Theorem provided a foundation for 

understanding when problems were not “calculable,” called “effectively computable” 

since Tarski (1949).  Turing’s analysis introducing the generalized concept of the Turing 

machine, now viewed as the model for a rational economic agent within computable 

economics (Velupillai, 2005c, p. 181).  While the original Gödel theorem relied upon a 

Cantor diagonal proof arising from self-referencing,4 the classic manifestation of non-

computability in programming is the halting problem, that a program will simply run 

forever without ever reaching a solution (Blum, Cucker, Shub, and Smale, 1998).   

Much of recent computable economics has involved showing that when one tries 

to put important parts of standard economic theory into forms that might be computable, 

it is found that they are not effectively computable in any general sense.  These include 

Walrasian equilibria (Lewis, 1991), Nash equilibria (Prasad, 1991; Tsuji, da Costa, and 

Doria, 1998), more general aspects of macroeconomics (Leijonhufvud, 1993), and 

whether a dynamical system will be chaotic or not (da Costa and Doria, 2005).5   

Indeed, what are viewed as dynamic complexities can arise from computability 

problems that arise in jumping from a classical and continuous, real number framework 

                                                 
4 Implications of self-referencing as related to Gödel’s Incompleteness Theorem have been studied by 
Binmore (1987) and Koppl and Rosser (2002).  One issue that can arise is multiple levels of conscious 
playing, one player thinking about the other player thinking about the first player thinking about the other 
player and so on up to n-levels (Stahl, 2000). 
5 Another main theme of computable economics involves considering which parts of economic theory can 
be proved when such classical logical axioms are relaxed as the Axiom of Choice and the exclusion of the 
middle.  Under such constructive mathematics problems can arise for proving Walrasian equilibria (Pour-El 
and Richards, 1979; Richter and Wong, 1999; Velupillai, 2002, 2006) and Nash equilibria (Prasad, 2004), 
however, we shall not pursue such themes here further.  
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to a digitized, rational numbers-only framework.  An example is the curious “finance 

function” of Clower and Howitt (1978) in which solution variables jump back and forth 

over large intervals discontinuously as the input variables go from integers, to non-

integer rationals to irrational numbers and back.  Velupillai (2005c, p. 186) notes the case 

of a Patriot missile missing its target by 700 meters and killing 28 soldiers as “friendly 

fire” in Dhahran, Saudi Arabia in 1991 due to a computer’s non-terminating cycling 

through a binary expansion on a decimal fraction.  Finally, the discovery of chaotic 

sensitive dependence on initial conditions by Lorenz (1963) because of computer 

roundoff error is famous, a case that is computable but undecidable. 

There are actually several computability based definitions of complexity, although 

Velupillai (2000, 2005b,c) argues that they can be linked as part of the broader 

foundation of computable economics.  The first is the Shannon (1948) measure of 

information content, which can be interpreted as attempting observe structure in a 

stochastic system.  It is thus derived from a measure of entropy in the system, or its state 

of disorder.  Thus, if p(x) is the probability density function of a set of K states denoted 

by values of x, then the Shannon entropy is given by  

H(X) = -Σx=1
K ln (p(x)).                                                         (1) 

From this is it is trivial to obtain the Shannon information content of X=x as 

   SI(x) = ln(1/p(x)).                                                                   (2) 

It came to be understood that this equals the number of bits in an algorithm that it takes to 

compute this code.  This would lead Kolmogorov (1965) to define what is now known as 

Kolmogorov complexity as the minimum number of bits in any algorithm that does not 
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prefix any other algorithm a(x) that a Universal Turing Machine (UTM) would require to 

compute a binary string of information, x, or,   

   K(x) = min │a(x)│,                                                                 (3) 

where │ │ denotes length of the algorithm in bits.6  Chaitin (1987) would independently 

discover and extend this minimum description length (MDL) concept and link it back to 

Gödel incompleteness issues, his version being known as algorithmic complexity, which 

would get taken up later by Albin (1982) and Lewis (1985) in economic contexts.7  

 While these concepts usefully linked probability theory and information theory 

with computability theory, they all share the unfortunate aspect of being non-computable.  

This would be remedied by the introduction of stochastic complexity by Rissanen (1978, 

1986, 1989, 2005).  The intuition behind Rissanen’s modification of the earlier concepts 

is to focus not on the direct measure of information but to seek a shorter description or 

model that will depict the “regular features” of the string.  For Kolmogorov a model of a 

string is another string that contains the first string.  Rissanen (2005, pp. 89-90) defines a 

likelihood function for a given structure as a class of parametric density functions that 

can be viewed as respective models, where θ represents a set of k parameters and x is a 

given data string indexed by n: 

   Mk = {f(xn, θ): θ Є Rk).                                                             (4) 

For a given f, with f(yn) a set of “normal strings,” the normalized maximum likelihood 

function will be given by 
                                                 
6 It should be understood that whereas on the one hand Kolmogorov’s earliest work axiomatized probability 
theory, his efforts to understand the problem of induction would lead him to later argue that information 
theory precedes probability theory (Kolmogorov, 1983).  McCall (2005) provides a useful discussion of 
this evolution of Kolmogorov’s views. 
7 Closely related would be the universal prior of Solomonoff (1964) that puts the MDL concept into a 
Bayesian framework.  From this comes the rather neatly intuitive idea that the most probable state will also 
have the shortest length of algorithm to describe it.  Solomonoff’s work was also independently developed, 
drawing on the probability theory of Keynes (1921).  
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  f*(xn , Mk) = f(xn, θ*(xn))/[∫θ(yn)f(yn, θ(yn))dyn],                                       (5) 

where the denominator of the right-hand side can be defined as being Cn,k. 

From this the stochastic complexity is given by 

  -ln f*(xn, Mk) = -ln f(xn, θ*(xn)) + ln Cn,k.                                               (6) 

This term can be interpreted as representing “the ‘shortest code length’ for the data xn that 

can be obtained with the model class Mk.” (Rissanen, 2005, p. 90).  With this we have a 

computable measure of complexity derived from the older ideas of Kolmogorov, 

Solomonoff, and Chaitin.  The bottom line of Kolmogorov complexity is that a system is 

complex if it is not computable.  The supporters of these approaches to defining 

economic complexity (Israel, 2005; Markose, 2005; Velupillai, 2005b,c) point out the 

precision given by these measures in contrast to so many of the alternatives. 

 

III.  DYNAMIC COMPLEXITY AND EMERGENCE 

 In contrast with the computationally defined measures described above, the 

dynamic complexity definition stands out curiously as essentially for its negativity: 

dynamical systems that do not endogenously and deterministically generate certain “well-

behaved” outcomes.  The charge that it is not precise carries weight.  However, the virtue 

of it is precisely its generality guaranteed by its vagueness.  It can apply to a wide variety 

of systems and processes that many have described as being “complex.”  Of course, the 

computationalists argue with reason that they are able to subsume substantial portions of 

nonlinear dynamics with their approach, as for example with the already mentioned result 

on the non-computability of chaotic dynamics (da Costa and Doria, 2005).  
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 However, most of this recent debate and discussion, especially by Israel (2005), 

McCauley (2005), and Velupillai (2005b,c) has focused on a particular outcome that is 

associated with some interacting agents models within the smaller tent complexity part of 

the broader big tent dynamic complexity concept.  This property or phenomenon is 

emergence.  It was much discussed by cyberneticists and general systems theorists (von 

Bertalanffy, 1962), including under the label anagenesis (Boulding, 1978; Jantsch, 1982), 

although it was initially formalized by Morgan (1923), drawing upon the idea of 

heteropathic laws due to Mill (1843, Book III).8  Much recent discussion has focused on 

Crutchfield (1994) because he has associated it more clearly with processes within 

computerized systems of interacting heterogeneous agents and linked it to minimum 

length computability concepts related to Kolmogorov’s idea, which it makes it easier for 

the computationalists to deal with.  In any case, the idea is of the dynamic appearance of 

something new endogenously and deterministically from the system, often also labeled 

self-organization.9  Furthermore, all of these cited here would add another important 

element, that it appears at a higher level within a dynamic hierarchical system as a result 

of processes occurring at lower levels of the system.   Crutchfield (1994) allows that what 

is involved is symmetry breaking bifurcations, which leads McCauley (2005, pp. 77-78) 

to be especially dismissive, identifying it with biological models (Kaufmann, 1993) and 

declaring that “so far no one has produced a clear empirically relevant or even 

theoretically clear example.”  The critics complain of implied holism and Israel identifies 

it with Wigner’s (1960) “mystical” alienation from the solidly grounded view of Galileo. 

                                                 
8 I thank K. Vela Velupillai for making me aware of these arguments.  Morgan was a key part of what is 
now known as the “British emergentist” school of thought (McLaughlin, 1992). 
9 This term has been especially associated with Bak (1996) and his self-organized criticality, although he 
was not the first to discuss self-organization in these contexts. 
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 Now the complaint of McCauley amounts to an apparent lack of invariance, a 

lack of ergodicity or steady state equilibria, with clearly identifiable symmetries whose 

breaking brings about these higher-level reorganizations or transformations.   

“We can understand how a cell mutates to a new form, but we do not have  
a model of how a fish evolves into a bird.  That is not to say that it has not 
happened, only that we do not have a model that helps us to imagine the details, 
which must be grounded in complicated cellular interactions that are not 
understood.”  (McCauley, 2005, p. 77)10

 
 While he is probably correct that the details of these interactions are not fully 

understood, a footnote on the same page points in the direction of some understanding 

that has appeared, not tied directly to Crutchfield or Kaufmann.  McCauley notes the 

work of Hermann Haken (1983) and his “examples of bifurcations to pattern formation 

via symmetry breaking.”  Several possible approaches suggest themselves at this point. 

 The first is a direct argument by biochemists Eigen and Schuster (1979) ironically 

enough regarding the preservation, reproduction, and transmission of information content 

in genetical systems.  They label the first appearance of self-reproducing biochemical 

structures as the hypercycle, “the simplest system that can allow the evolution of 

reproducible links,” (Eigen and Schuster, 1979, p. 87).  They propose a threshold of 

information content.  Below this threshold the system can stabilize itself against the 

accumulation of errors in self-reproduction.  Above it will occur an error catastrophe that 

results in the  “disintegration of information due to a steady accumulation of errors,” 

(Eigen and Schuster, 1979, p. 25).  Assuming that V is the number of symbols, σ > 1 is 

the degree of “superiority of the master copy,” and q is the quality of symbol copying, 

then the threshold below which the number of symbols must remain is given by 

                                                 
10 McCauley’s argument is based on Moore’s (1990, 1991a,b) study of low dimensional, iterated maps that 
are Turing machines without attractors, scaling properties, or symbolic dynamics.  McCauley argues that 
this view provides a foundation for complexity as ultimate surprise and unpredictability.  

 9



   V < ln σ/(1-q).                                                                         (7) 

Hypercycle formation has been simulated by Mosekilde, Rasmussen, and Sorenson 

(1983) and the concept has been applied to the evolution of market structures based on 

differential rates of learning among firms by Silverberg, Dosi, and Orsenigo (1988).   

It has also been linked with the concept of autopoesis, defined as the stable 

reproduction of a space-time structure (Varela, Maturana, and Uribe, 1974).  While 

Turing defined morphogenesis as structural differentiation due to bifurcation at a single 

level, anagenesis within a hierarchical system of a new, self-reproducing hierarchical 

level that is self-reproducing has been labeled hypercyclic morphogenesis by Rosser 

(1991, 1992) or the anagenetic moment by Rosser, Folke, Günther, Isomäki, Perrings, 

and Puu (1994).  Some of the early models of hypercycle formation required the absence 

of parasites, however with appropriate mixing, they may be stable against parasites 

(Boerlijst and Hogeweg, 1991).   

This raises parallels within evolutionary game theoretic models of the issue of 

multi-level evolution (Henrich, 2004), with the Price-Hamilton equations providing 

sufficient conditions for this to occur, although the original version of these was due to 

Crow (1953).  For its discrete form, if ΔC is the single generation change mean value of 

the trait in the whole population, Bw and Bb are the within- and between-group genetic 

regressions of fitness on the value of the trait, Vw and Vb the within and between-group 

genetic variances, and W the mean population fitness, then  

  ΔC = (BwVw +  BbVb)/W.                                                         (8) 

This allows for a statement of Hamilton’s (1972) condition for an altruistic trait to 

increase (the equivalent of cooperation at a higher level) as 
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    Bw/(Bb – Bw) < r,                                                          (9) 

Where r is the Sewall Wright coefficient of relationship (Crow and Aoki, 1984).  The 

left-hand side can be interpreted as a cost-of-fitness to benefit-minus-cost-of-fitness ratio.             

 Another approach is that of the synergetics due to Haken (1983), alluded to 

above.  This deals more directly with the concept of entrainment of oscillations via the 

slaving principle (Haken, 1996), which operates on the principle of adiabatic 

approximation.  A complex system is divided into order parameters that are presumed to 

move slowly in time and “slave” faster moving variables or subsystems.  While it may be 

the that the order parameters are operating at a higher hierarchical level, which would be 

consistent with many generalizations made about relative patterns between such levels 

(Allen and Hoekstra, 1992; Holling, 1992), this is not necessarily the case, and the 

variables may well be fully equivalent in a single, flat hierarchy, such as with the control 

and state variables in catastrophe theory models.  Stochastic perturbations can lead to 

structural change near bifurcation points. 

 If slow dynamics are given by vector F, fast dynamics generated by vector  Q, 

with A,B,  and C being matrices, and ε a stochastic noise vector, then a locally linearized 

version is given by 

   dq = Aq + B(F)q C(F) + ε.                                                      (10) 

Adiabatic approximation is given by  

   dq = -(A + B(F))-1C(F).                                                            (11) 

Fast variable dependence on the slow variables is given by A + B(F).  Order parameters 

are those of the least absolute value. 
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 The symmetry breaking bifurcation occurs when the order parameters destabilize 

by obtaining eigenvalues with positive real parts, while the “slave variables” exhibit the 

opposite.   Chaos is one possible outcome. However, the most dramatic situation is when 

the slaved variables destabilize and “revolt” (Diener and Poston, 1984), with the 

possibility of the roles switching within the system and former slaves replacing the 

former “bosses” to become the new order parameters.  An example in nature of such an 

emerging and self-organizing entrainment might the periodic and coordinated appearance 

of the slime mold out of separated amoebae, which later disintegrates back into its 

isolated cells (Garfinkel, 1987). 

 Finally there is the model of Nicolis (1986), derived from the work of Nicolis and 

Prigogine (1977) on frequency entrainment.  Rosser, Folke, Günther, Isomäki, Perrings, 

and Puu (1994) have argued that this can serve as a possible model for the anagenetic 

moment, or the emergence of a new level of hierarchy.  Let there be n well-defined levels 

of the hierarchy, with L1 at the bottom and Ln at the top.  A new level, Ln+1, or dissipative 

structure, can emerge at a phase transition with a sufficient degree of entrainment of the 

oscillations at that level.  Let there be k oscillating variables, xj and zi(t) be an i.i.d. 

exogenous stochastic process with zero mean and constant variance, then dynamics are 

given by the coupled, nonlinear differential equations of the form 

  dxi/dt = fi(xj, t) + zi(t) + Σj=1
k ∫1kxj(t’)wij(t’ + τ)dt’,                                (12) 

with wij representing a cross-correlation matrix operator.  The third term is the key, either 

being “on” or “off,” with the former showing frequency entrainment.  Nicolis (1986) 

views this in terms of a model of neurons, with a master hard nonlinear oscillator being 

turned on by a symmetry breaking of the cross-correlation matrix operator when the 
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probability distribution of the real parts of its eigenvalues exceeding zero.11  Then a new 

variable vector will emerge at the Ln+1 level that is yj, which will damp or stimulate the 

oscillations at level Ln, depending on whether the sum over them is below or above zero.  

 

IV.  DISCUSSION AND CONCLUSIONS 

Needless to say, most of the models discussed in this last section would not 

impress most of the adherents of the computability approach to complexity.  To the 

extent that the models discussed have axiomatic foundations rather than being merely ad 

hoc, which many of them ultimately are, these foundations are strictly within the non-

constructivist, classical mathematical mode, assuming the Axiom of Choice, the Law of 

the Excluded Middle, and other hobby horses of the everyday mathematicians and 

mathematical economists.  To the extent that they provide insight into the nature of 

dynamic economic complexity and the special problem of emergence (or anagenesis), 

they do not do so by being based on axiomatic foundations12 that would pass muster with 

the constructivists and intuitionists of the early and mid-20th century, much less their 

more recent disciples, who are following the ideal hope that “The future is a minority; the 

past and present are a majority,” to quote Velupillai (2005b, p. 13), himself paraphrasing 

Shimon Peres from an interview about the prospects for Middle East peace. 

 In any case, even if the future belongs to computable complexity, there are a 

considerable array of models available for contemplating or modeling emergent 

                                                 
11 In a related model, Holden and Erneux (1993) show that the systemic switch may take the form of a slow 
passage through a supercritical Hopf bifurcation., thus leading to the persistence for awhile of the previous 
state even after the bifurcation point has been passed. 
12 While this movement focuses on refining axiomatic foundations, it ultimately seeks to be less formalistic 
and Bourbakian.  This is consistent with the history of mathematical economics, which first moved towards 
a greater axiomatization and formalism within the classical mathematical paradigm, only to move away 
from it in more recent years (Weintraub, 2002). 
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phenomena operating at different hierarchical levels.  I would suggest at this point that a 

potentially interesting area to see which of the approaches might prove to be most 

suitable may well be in the study of the evolution of market processes as they themselves 

become more computerized.  This is the focus of Mirowski (2006) who goes so far as to 

argue that fundamentally markets are algorithms.  The simple kind of posted price, spot 

market most people have traditionally bought things in is at the bottom of a Chomskyian 

hierarchy of complexity and self-referenced control.  Just as newer algorithms may 

contain older algrorithms within them, so the emergence of newer kinds of markets can 

contain and control the older kinds as they move to higher levels in this Chomskyian 

hierarchy.  Futures markets may control spot markets, options markets may control 

futures markets, and the ever higher order of these markets and their increasing 

automation pushes the system to a higher level towards the unreachable ideal of being a 

full-blown Universal Turing Machine (Cotogno, 2003). 

 Mirowski brings to bear more recent arguments in biology regarding coevolution, 

noting that the space in which the agents and systems are evolving itself changes with 

their evolution.  To the extent that the market system increasingly resembles a gigantic 

assembly of interacting and evolving algorithms, both biology and the problem of 

computability will come to bear and will come to bear and influence each other (Stadler, 

Stadler, Wagner, and Fontana, 2001).  In the end the distinction between the two may 

become irrelevant. 

 In that regard what may become more important as the system moves to higher 

order levels will be the old struggle between the continuous and the discrete, with such 

intermediate compromises such as those posed in Blum, Cucker, Shub, and Smale (1998) 
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looming as more important over time.  While this struggle may result in system-wide 

crashes or failures due to the sorts of computer errors that pushed the Patriot missile 700 

meters off in 1991, more likely will be an outcome in which the way that a particular 

algorithm or system behaves or interacts with the other parts will depend on how it looks 

at the system and from which level.  In that regard, I conclude with a quote from Joseph 

Schumpeter (1939, pp. 226-227). 

“Our theory of the mechanism of change stresses discontinuity.  It takes 
the view that, as we may put it, evolution proceeds by successive revolutions, or, 
that there are in the process jerks or jumps which account for many of its features.  
As soon, however, as we survey the history of society or of any particular sector 
of social life, we become aware of a fact which seems at first sight to be 
incompatible with that view: every change seems to consist in the accumulation of 
many small influences and events and comes about precisely by steps so small as 
to make any exact dating and any sharp distinction of epochs almost 
meaningless…Now it is important to note that there is no contradiction whatever 
between our theory and a theory of history which bases itself on those facts.  
What difference there is, is a difference of purpose and method only.  This 
becomes evident if we reflect that any given industrial development, for instance 
the electrification of the household, may involve many discontinuities incident to 
the setting up of new production functions when looked at from the standpoint of 
individual firms and yet appear, when looked at from other standpoints as a 
continuous process proceeding steadily from roots centuries back.  By one of the 
many roughnesses or even superficialities forced upon us by the nature of the task 
this volume is to fulfill, we may characterize this as a difference between 
microscopic and macroscopic points of view: there is as little contradiction 
between them as there is between calling the contour of a forest discontinuous for 
some and smooth for other purposes.”    
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