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1 Introduction 
Systems models of larger populations (such as those used for health policy, ecological studies, marketing, urban 
planning, etc.) have traditionally tended to be aggregate, in the sense that a particular state variable summarizes 
information on many individuals.  Such aggregate models offer many virtues, including greater transparency, ease 
of analysis and calibration.  However, modeling considerations sometimes motivate the use of finer-grained 
models.  Such factors include the need to evaluate interventions targeted at an individual level particular 
individuals (e.g. such as are increasingly used in infectious disease epidemiology), to understand transfer effects 
or dynamic impacts of heterogeneity on intervention effectiveness , the dynamics of complex and adaptive 
network structures, and memoryful transition processes.  Such concerns have fostered the popularity of 
individual-based models, which explicitly describe and simulate the attributes and behavior of each member of a 
population.  Behavior within such individual-based models can be formulated in many different ways, including 
using classic state-equation methods (using ordinary differential equations) or with discrete objects and rules (as 
is typical in classic agent-based modeling). 

While individual-based approaches offer considerable value for addressing certain types of questions and 
problems, such models impose higher (and frequently dramatically higher) performance costs.  The heavy 
performance burden associated with large-scale individual-based models reflects several factors.  The first is the 
simple cost of updating a state vector of size proportional to the count of individuals in the population (which we 
term n).  Even a model where each individual evolves completely independent of others will experience linear 
performance scaling; for large populations and significant amounts of individual state this can impose a very 
heavy burden (not least because of memory hierarchy effects).  Models with highly connected populations will 
often exhibit performance costs that rise superlinearly with population size.  For example, a model in which each 
individual is connected to a small fraction α of other individuals in the population will impose performance costs 
that rise at least proportional to n2 (i.e. Ω(n2)).  Thirdly, because individual behavior and dynamics (e.g. infection 
spread from one individual to another, or the decision of an individual to cease smoking) often involves some 
stochastic factors, individual-based models often require consideration of stochastic processes.  Gaining an 
appreciation for the behavior of a given fully parameterized model often requires evaluation of a Monte Carlo 
ensemble of realizations – a process that can require a day or more of simulation time.   

In addition to inhibiting exploratory learning and user involvement, prolonged model simulation times can also 
impose significant opportunity costs that can reduce the value delivered by the model. For example, long 
simulation times can rule out interactive model exploration and considerable reduce the amount of focused model 
exploration that is possible – thereby impeding a modeler’s understanding of a model’s dynamics.  The longer 
cycle time associated with understanding each version of the model performance burden can also reduce the 
opportunities for model refinement. 

In light of the above performance concerns, creators of individual-based models involving large populations are 
often tempted to draw insights from simulations involving subsamples of the full population [1].  Unfortunately, 
while working with subpopulations can greatly lessen performance burdens, it can also be deceiving:  Naïve 
intuition may mislead one into believing that reduction of a population size by some factor should be 
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accompanied by a similar reduction in all parameters – a transformation that may qualitatively alter the behavior 
of the model and make results of the reduced-scale model completely unrepresentative of the full-scale model.  
Even given an adequate reduced-scale model, it is often unclear how to scale up results from a reduced-scale 
model to correspond the results that would obtain for a full population.  Indeed, as we will see, this scaling can be 
quite complex, involving power laws and ratios of other parameters. 

Drawing inspiration from the widespread and critical role that dimensional analysis and scaling have played in 
engineering and the physical sciences, this paper proposes the use of these tools to address the performance 
challenges associated with individual-based models.   Specifically, we propose a precise, rigorous, systematic and 
general-purpose technique to formulating reduced-scale individual-based models.  Measurements of output 
parameters of such reduced-scale models can then be precisely transformed (in accordance with model scaling 
laws) to yield comparable results for a full-scale model – without the need to run the full-scale model.  It is 
notable that these techniques these techniques are notable in relying only upon dimensional homogeneity of the 
full-scale model, and on not the specifics of model behavior or use of a particular mathematical framework.   

The remainder of the paper is organized as follows.  The next section of this paper explains some basic concepts 
of dimensional analysis.  A key component of this section is the recognition that any real-world system – or any 
dimensionally homogeneous model [2] – must be amenable to description in a fashion that is independent of unit 
systems – a model, therefore, which involves only dimensionless variables.  The following section introduces the 
notion of similitude, which provides the basis for scale models.  The next section simultaneously describes and 
illustrates (with an example) a systematic means for deriving scale models from full-sized models with precisely 
specified parameter values. The final section of the paper provides a brief summary of the paper and lays out 
prospects for additional work. 

2 Dimensional Analysis 
Dimensional analysis rests upon the concept of dimensional quantities. Physical quantities can be associated with 
semantic categories (the ‘Dimension’ of the quantity, such as “Person”, “Time”, “Length3”, “Liquid Volume”), as 
well as the standard of reference for measuring/sizing the quantity (the ‘Units’ of the quantity, such as “Day”, 
“cubic foot”, “gallon”) [3, 4]. 

Dimensional quantities are associated with a formal dimensional algebra that differs in important ways from the 
algebras on non-dimensional quantities, such as real numbers [5].  Within such an algebra, we associate each 
dimensional quantity with a product of powers of different units (or dimensions), i.e. 31 2

1 2 3 ... ni ii i
nd d d d , where 

there exist exactly n dimensions of concern to us, where each exponent ij represents the power to which the 
corresponding dimension d is included, and where the ordering of the dimensions d is arbitrary.  For example, 
Mortality might be associated with units Person1/Day i.e. Person1*Day-1 (and of dimension Person1*Time-1).  A 
notable class of quantities is those associated with unit dimension (commonly called dimensionless1, although this 
is somewhat of a misnomer) – i.e. where i1=i2=…in=0. 

The dimensions associated with a given quantity (in this case Person1*Time-1) can be used in a straightforward 
fashion to indicate how the value of a given quantity would change given a change in unit systems.  For example, 
if we were to change our chosen measurement for people from individual persons to thousands of people (a factor 
of 1000 increase) it follows that the numerical value of a quantity whose dimension of Person1*Time-1 would be 
divided by value  10001.  Similarly, if we were to change the measurement for time from days to weeks (a factor 
of 7 increase), the numeric value of the resulting quantity would be divided by 7-1 (i.e. multiplied by 7).  Given a 

                                                      
1 Strictly speaking, the term “dimensionless” is a misnomer.  While “Dimensionless” quantities have no dependence on the 
units by which we measure any dimension, such quantities are no more dimensionless than quantities of 0 length are 
“lengthless”.  “Dimensionless” quantities have a dimension, just a very special dimension – one in which the exponent of 
every dimension is identically 0.  A better (or at least less abusive) name is “unit” dimension.  Nonetheless, we cede to 
convention in using the term “dimensionless” in this document. 
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dimensioned quantity whose dimensions include the term di, increasing the magnitude of the unit of measurement 
of a dimension d by a factor of x will lead the numeric value of that quantity to be divided by a factor of xi. 
“Dimensionless” quantities are particularly notable in that their numeric values are independent of the units 
system employed – that is, they retain their values regardless of our measurement conventions.  As will be 
discussed below, such quantities play a critical role in real-world systems.  

Mathematical operators can be extended to dimensional quantities in consistent manners [5].  For example, 
multiplication of quantities drawn from two different unit (dimension) systems yields a product with units 
(dimensions)that are composed of a product of powers of each unit (dimension), where the exponent on a given 
unit is just the sum of the exponents on that unit (dimensions) (possibly zero) for each of the quantities being 
multiplied.  In general, the presence of dimensional quantities aids the modeling process by imposing additional 
structure that significantly constrains the set of legitimate formulations that can be considered in a given problem.   
For example, addition of dimensional quantities are not defined unless both quantities possess identical units2 and 
dimensions.  It follows from these results that a dimensioned quantity in an (for example) exponent or 
trigonometric function must be of unit dimension.   Matrix algebra, state equations, and other mathematical 
constructs have been systematically extended to dimensioned quantities [5].   

By far the most common use of dimensional analysis – and one widespread within the Systems Dynamics 
community – is as a simple check the correctness of formulas.  While dimensional analysis delivers considerable 
value in this capacity, the ideas are vastly deeper than is commonly realized, and the full value of the approach 
extends far beyond dimensional bookkeeping on exponents [6].   

3 Similitude 

3.1 The Buckingham Pi Theorem 

3.1.1 Background  
This section focuses on the notion of similitude, which provides the basis for scale models.  We first introduce the 
Buckingham3 Pi Theorem [7, 8], which states that any dimensionally consistent model of a physical system can be 
formulated in a fashion that involves only dimensionless parameters.  Because dimensionless parameters are 
invariant to unit change, such a representation is independent of measurement system. It follows that that two 
instances of a systems model having different population sizes and having identical values for all dimensionless 
parameters must exhibit “similar” behavior4.  We then discuss a systematic approach for identifying the 
dimensionless variables associated with a model and determining an exact relationship relating the scaling of a 
given dependent variable in terms of other model governing parameters.  Finally, we describe a procedure that, 
given a complete specification for the parameters values of a full-scale model, permits us to derive the parameters 
of a reduced-scale model offering desirable values for particular parameter values (such as the population size).   

We begin this section by adopting the widely held assumption that the processes of the real world operate 
regardless of which measurement systems we use to describe those processes. On the basis of this assumption, we 
can say with confidence that whatever equations govern (and describe) those real-world processes, they must 
operate independent of unit systems. 

                                                      
2 Addition of quantities drawn from separate unit system but the same dimensions cannot be performed unless the quantities 
are scaled by the appropriate unit conversions.  It is simply nonsensical to add quantities drawn from different dimensions. 
3 Note that although the Theorem carries Buckingham’s name, there is good reason to think that the critical ideas originated 
decades earlier. 
4 We ignore here discretization effects, which play an important role for smaller models. 
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At the most basic level, the Buckingham Pi Theorem [7] builds upon two key observations:  This invariance of 
real-world systems to unit systems, and the fact that only dimensionless quantities are independent of unit systems.  
Informally, the Pi Theorem states that one can respecify any legitimate dimensionally homogeneous equation 
using an equation involving only dimensionless quantities.   

More specifically, consider a dimensionally consistent (homogeneous) equation relating n dimensional quantities 
(governing parameters) x1…xn and associated with r independent5 dimensional products.  Without loss of 
generality, assume that x1 is the dependent variable: 

 ( )1 2 3 4, , ,..., nx f x x x x=  

This equation can always be reformulated as an equation involving only (n-r) dimensionless parameters Πi.   

 ( )1 2 3 4, , , , n rπ π π π π −= Ψ K  

Each of these dimensionless parameters πi is defined as a product of powers of the original governing parameters 
x1…xn such that the exponents of each dimension balance to 0 and their product is dimensionless.  π1 is the unique 
dependent dimensionless parameter, and is the sole dimensionless parameter involving the dependent variable x1.  
Given that π1 is defined as a product of powers of the xi, the relationship between x1 and π1 is such that: 
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Where 0≤k≤n-d is the number of other governing parameters xi needed to multiply (divide) x1 in order to make the 
product dimensionless.  

Moreover, a deeper result of the Pi Theorem indicates that any dimensionally consistent (homogeneous) model 
can be reformulated in this fashion. It bears stressing that while the above equations appear algebraic, the 
Buckingham Pi Theorem holds for equations in general – including Ordinary, Stochastic and Partial Differential 
Equations.  

3.1.2 Advantages of the Π Theorem 
While it may initially appear a mere curiosity, The Buckingham Pi Theorem has a number of significant 
implications.  While the Buckingham Pi Theorem describes a deep fact about relations between dimensional 
quantities in the real world, we can take advantage of our knowledge of this theorem when we specify models of 
the external world. Specifically, secure in the knowledge that relations between quantities in the world can be 
described using only dimensionless quantities, we can confine our attention to building models of the real world 
that use only dimensionless parameters (πi).   

Explicitly working with models involving only dimensionless parameters offers a number of significant 
advantages.  Firstly, consider the amount of effort needed to statistically estimate a mathematical model 
mathematical model relating of n governing parameters (in d independent dimensions), as compared to the 
corresponding mathematical model involving only (n-d) dimensionless quantities.  Because of the curse of 
dimensionality, the dimensionless mathematical model will often require orders of magnitude fewer parameters to 
estimate than would the naïve statistical model [9].  Secondly, formulating from the start a model involving only 
dimensionless variables allows us to transparently switch between different unit systems, without any change to 
the model.   
                                                      
5 We refer to independence in a linear algebraic sense, where the vector space has axes for each dimension of concern, and 
each vector uniquely represents a unique product of dimensions.  The value of the vector along a particular dimension is 
given by the exponent associated with that product of dimensions. 
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Thirdly, the identification of the dimensionless parameters and knowledge that they are linked through some 
(typically unknown) function Ψ can provide insight into how a system must function.  The dimensionless 
parameters being used by such a model (e.g. the Reynolds Numbers, Fourier Number, Raleigh Number, Mach 
Number) frequently have deep and recurring physical significance.  Conceptualizing the world in terms of such 
dimensionless quantities can provide insight into causal regularities, and particularly into scaling properties and 
invariants.  The level of insight gained through the Buckingham Pi Theorem does vary between problems; the 
insights gained from models employing few dimensionless parameters can be particularly striking. Insights can be 
sharpened by a variety of techniques, including refinement of the dimensional system via dimension splitting [8], 
fusion of tightly coupled governing parameters [8], and reasoning based on intermediate asymptotics [9, 12].   

3.2 Similar Systems 
Consider two real-world systems A and B associated with the same set of governing parameters xi pertinent to the 
phenomenon of interest, where those parameters are governed by the same fundamental processes.  Although A 
and B share identical sets of governing parameters, the two systems may differ with respect to the particular value 
of these governing parameters.  For example, A could be a full-size aircraft, and B a reduced-size aircraft for 
wind-tunnel experiments.  Alternatively, A may be a large antenna, and B electrical engineer’s small-scale model 
thereof, or perhaps A is a bridge, and B a smaller replica of that bridge for structural testing.    For our purposes, 
A could be a full-scale simulation model and B a reduced-scale model.  Call the particular values associated with 
those governing parameters in systems A and B ,i FSx and ,i RSx .  (Note that while we adopt subscriptions 
suggestive of “full-scale” and “reduced-scale” for the sake of clarity in later discussion involving reduced-scale 
models, the notion of dimensional similarity by no means requires that either A or B is a systematically reduced 
version of the other.  Indeed, in comparison to A’s governing parameters, B’s governing parameters may be larger, 
smaller, or some combination thereof.) 

Following the previous section, such systems have a (frequently unknown) relation giving dependent variable xA
1 

(or xB
1) as a function of the other governing parameters.  Thus 

 ( )1, 2, 3, 4, ,, , ,...,FS FS FS FS n FSx f x x x x=  

and 

 ( )1, 2, 3, 4, ,, , ,...,RS RS RS RS n RSx f x x x x=  

It bears emphasizing that because we assume that A and B are governed by the same processes, f is the same 
function in both cases.   

We know from the Buckingham Pi Theorem that these equations can be rewritten in the form 

( )1, 2, 3, 4, ,, , , ,FS FS FS FS n r FSπ π π π π −= Ψ K  

and 

 ( )1, 2, 3, 4, ,, , , ,RS RS RS RS n r RSπ π π π π −= Ψ K  

We term A and B similar if ( ), ,,1 , i FS i RSi i n π π∀ ≤ ≤ = .  That is, two systems that may be very different in 

terms of the particular values of their parameter sets ,i FSx  and ,i RSx  are considered similar if all dimensionless 
variables share the same values in each of these two systems.  The notion of dimensionally similar is important in 
that the Buckingham Pi Theorem reveals that two similar systems are really “the same system,” the difference 
between them being one merely of scale.  Thus we can think of a model reformulated so as to use only 
dimensionless parameters as defining equivalence classes of systems.  Each member of these equivalence classes 
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shares with all others in the same equivalence class identical values for all dimensionless parameters in the 
(reformulated) system. 

We note that because 1,FSπ is purely a function of the other ,i FSπ  (and similarly for 1,RSπ ) and because the relation 
Ψ is identical for both A and B, A and B are similar if 

 ( ), ,, 2 , i FS i RSi i n π π∀ ≤ ≤ =  

From which it must follow that the dependent variables must hold identical values, that is, that 1, 1,FS RSπ π= .   

For many decades, scientists and engineers have exploited the concepts of similarity to build dimensionally 
similar scale models that behave identical to a full-scale system with respect to clearly-defined class of measures.  
We now turn to apply this notion to the particular case of individual-based simulations.  The next section briefly 
explains how such scale models are constructed. 

3.3 Building Scale Models 
Scale modeling is traditionally used to facilitate convenient experimentation with systems in the external world, 
whether of natural or artificial origin.  Reduced-scale models of bridges, buildings, ocean waves, and vehicles are 
far cheaper and more tractable to work with than are their full-sized counterparts. In most such cases, the relation 
between the relevant governing parameters is not fully known, but this poses no barrier:  Such scale modeling 
does not any knowledge of the underlying equations, and exploits only the invariance of the behavior of the 
external world with respect to unit system choice.   

Within this paper, we exploit the same basic idea, but with a slightly different twist.  While perhaps all previous 
scale models have focused on real-world artifacts, our modeling target is itself another model– an individual-
based simulation model.  While traditional scale modeling relies upon the dimensional consistency (homogeneity) 
of relations between real-world processes, we rely here upon the dimensional consistency of the individual-based 
simulation model.  The dimensional consistency of this model assures us that the Buckingham Pi Theorem applies 
for any relation relating a dependent governing parameter x1 to the other the governing parameters of the model 
x2…xn.  While we need not explicitly derive the corresponding relation involving only dimensionless quantities Πi, 
the Pi Theorem guarantees that this relation does exist and provides the basis for subsequent scale modeling. 

As an alternative to simulating the full-scale system to measure on a large-scale individual-based model x1, we 
can thus make use instead of a reduced-scale model (one with, for example, a much smaller population) by 
following the steps below.  In order to illustrate these steps, we introduce an ongoing example. 

3.3.1 Step 1:  Identify Governing Parameters and their Dimensions 
Consider an individual-based model of the spread of a zoonotic infectious disease [10, 11].  For such diseases 
(which include important tropical diseases such as Schistosomiasis, Malaria, and Dengue fever), all secondary 
infections of a person (Host) occur from an animal (Vector; Snails for Schistosomiasis and Mosquitoes for 
Malaria and Dengue fever).  The etiology of such diseases can be complex, and perhaps our individual-based 
simulation model includes detailed characterization of immune system response (as affects egg shedding in 
Schistosomiasis), heterogeneity in disease response (notable for Schistosomiasis), and behavioral factors (as 
might affect likelihood of exposure to a Vector or the successful transmission of the disease to vectors). 

Suppose that we would ideally like to simulate a full-scale individual-based model6 having governing parameter 
values7 as follows: 

                                                      
6 While we would typically approach the scale-model identification with a specific model in hand, we purposefully omit 
specification of the equations of such a model for the sake of brevity and communicating the generality of this approach – 
particularly, the fact that it does not rely on any detail of model specification (except for its dimensional homogeneity). 
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Description Parameter Dimension 

Death rates for infected Vectors μv 1/Time 

Death rates for infected Hosts μh 1/Time 

Per-Contact likelihood of 
Transmission from hosts to vector 

βv 1 (“Dimensionless”) 

Per-Contact likelihood of 
Transmission from vectors to host 

βh 1 

Net migration rate for vectors Mv Vector / Time 

Net migration rate for hosts Mh Host / Time 

Recovery rate for infected hosts α 1/Time 

Initial infected hosts Ih0 Hosts 

Initial infected vectors Iv0 Vectors   

Contact rate c Host/(Vector*Time) 

Population size for vectors Pv Vector 

Population size for hosts Ph Host 

Current time t Time 

Suppose further that the full-scale model using these parameters imposes an infeasibly high performance burden 
due to high population sizes of vectors and hosts.  We therefore wish to create a reduced-size model (specifically 
including smaller populations for vectors and hosts) whose outputs we can extrapolate to the full-scale model.  
While this goal seems obvious enough, it is not immediately clear how reducing the size of the populations should 
impact the various parameter values.  For example, if we were to reduce the population of vectors and hosts by 
some uniform factor ε, should we reduce the contact rate by the same factor?  What of the transmission 
probabilities?  Would the reduced-scale model that is yielded have a timescale equivalent to that of the full-scale 
model, such that we could apply times read off from the reduced-scale model (e.g. time of maximum prevalence) 
directly in the context of the full scale model? 

3.3.2 Step 2:  Identify Dependent Variable 
Suppose that we wish to calculate a dependent parameter λ of dimension 1/Time – such as would be associated 
with a frequency (e.g. frequency of oscillation), a fractional rate of growth, an eigenvalue of the linearized system, 
etc.  Because all of these have identical dimension, they can all be calculated using an identical reduced-scale 
model and scaling procedure. (As we will see, dependent variables of different dimension can typically be 
calculated using an identical reduced-scale model, but will require different scaling formulas to extrapolate from 
the results of the reduced-scale model to those of the full-scale model.) 

                                                                                                                                                                                        
7 Note that some of these parameters are sizes of collections, as in the size of the host and vector population.  We adopt much 
of our notation from a compartment model of the same phenomenon included in the cited references.  
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3.3.3 Step 3:  Identify Expressions for Dimensionless Variables 

3.3.3.1 Basics 
Recalling the notion of similarity from Section 3.3, we know that any scale model must preserve the value of all 
independent dimensionless parameters πi.  Two models with identical values for corresponding dimensionless 
parameters must yield an identical value for the dependent variable no matter how complex Ψ may be.  We thus 
proceed to determine a set of governing parameters for the reduced-scale model (for example, αRS and Mh,RS) that 
are both computationally feasible and leave the dimensionless variables for that reduced-scale model (πi,RS) equal 
in value to the corresponding πi,FS. 

The first step in this direction is to identify expressions for a set of dimensionless variables Πi in terms of the 
dependent variable and plausible governing parameters.  This set need not be unique and is straightforward (and 
nearly mechanical) to derive, being identified through reference to a dimensional matrix populated through 
reflection on the dimensionality of governing parameters and a bit of linear algebra.   

For our case dimensional matrix can be defined as follows; the Appendix describes a systematic means by which 
this and similar matrices can be derived.  

 

 

 λ Mh Mv μh μv α Ih0 Iv0 βh βv c Ph Pv t 

Host 1 1 0 0 0 0 1 0 0 0 1 1 0 0 

Vector 0 0 1 0 0 0 0 1 0 0 -1 0 1 0 

Time -1 -1 -1 -1 -1 -1 0 0 0 0 -1 0 0 1 

π1 1 0 0 0 0 0 0 0 0 0 0 -1 0 1 

π2 0 1 0 0 0 0 0 0 0 0 0 -1 0 1 

π3 0 0 1 0 0 0 0 0 0 0 0 0 -1 1 

π4 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

π5 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

π6 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

π7 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 

π8 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 

π9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

π10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

π11 0 0 0 0 0 0 0 0 0 0 1 -1 1 1 

Table 1 Example Dimensional Matrix.  Shaded portions are specific to the dimensionality of the dependent variable 
chosen (1/Time). 

The first column and 4th row of Table 1 (shaded for reference) are specific to dimensionality (Host/Time) of the 
dependent variable (λ) we have chosen; the remainder of the table is invariant of the choice of dependent variable. 
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We can read off the definition of each dimensionless parameter Πi from the corresponding lower 11 rows of Table 
1.  Each entry in such rows describes the exponent of the associated governing parameter (as specified by the 
column) within the dimensionless parameter (as specified by the row). 

For our case, the dimensionless parameters are defined as follows: 

 1
h

t
P
λπ =  

 2
h

h

M t
P

π =  

3
v

v

M t
P

π =  

4 htπ μ=  

5 vtπ μ=  

6 tπ α=  

0
7

h

h

I
P

π =  

0
8

v

v

I
P

π =  

9 hπ β=  

10 vπ β=  

11
v

h

cP t
P

π =  

3.3.4 Step 4:  Identify Values of Dimensionless Parameters in Full-Scale Model 
The next step in deriving a reduced-scale model is to derive the value that each non-dependent dimensionless 
parameter πi,i>1 must hold in the reduced-scale model.  We do so based on the known values of the non-
dependent governing parameters xi,FS, i>1 within the full-scale model.  To maintain similar results, we must 
design the reduced-scale model to maintain identical values all of the dimensionless parameters. 

For example, for π2 we compute as follows: 

,
2

,

h FS FS

h FS

M t
P

π =
 

Similar calculations are performed for the other dimensionless parameters, except for the dependent 
dimensionless parameter π1.  The latter is to be determined through calculations on the results of empirical 
measurement.  
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3.3.5 Step 5:  Derive Governing Parameters for the Reduced-Scale Model 
In the final step needed to complete the specification of the reduced-scale model, we derive the governing 
parameters xi,RS,i>1 for a reduced-scale system such that all of the non-dependent dimensionless parameters πi,i>1 
in the reduced-scale model share the same values as their corresponding parameters in the full-scale model.   

The derivation of these governing parameters will vary with respect to their position in the dimensional matrix 
above (see Appendix).  The governing parameters in the last several columns of the matrix depicted in Table 1 
(those in submatrix C, as defined in the Appendix) are free parameters that can be assigned convenient values by 
the modeler.  By contrast, the other governing parameters for the reduced-scale model system are bound 
parameters to be derived from the free parameters and the corresponding values of the governing parameters in 
the full-scale model. 

The next two subsections describe these parameters for our example. 

3.3.5.1 Free Governing Parameters 
The free (independent) governing parameters (the quantities associated with the last r columns the dimensional 
matrix (where r is the count of independent dimensions) are for us to choose.  In this model, we assume that the 
computational expense arises predominantly from the need to simulate the transmission of infection in the 
(individually represented) populations of vectors and hosts.  Suppose that to construct the reduced-scale model we 
wish to downsample the population by a coefficient of ε<<1; thus we wish to have  

 , ,

, ,

h RS h FS

v RS v FS

P P
P P

ε

ε

=

=
 

For the final free governing parameter – time t – suppose that we wish to preserve identical timing for the 
reduced-scale model as that which obtains in the full-size model, thus 

 tRS = tFS 

3.3.5.2 Bound Governing Parameters 
Having determined the free governing parameters of the reduced scale model, we must determine the values of the 
bound governing parameters in the reduced scale model.  While we can perform this process in a fully automated 
fashion using matrix manipulations (Gaussian Elimination) of the logarithms of coefficients of governing 
parameters, this section illustrates the process through manual calculations.  The Appendix illustrates how similar 
results can be obtained through inspection. 

From the equivalence of dimensionless parameters in the full and reduced-size models, we know that the 
governing parameters that happen to be dimensionless must hold identical values in the two models, thus: 

9, 9, , ,RS FS h RS h FSπ π β β= ⇒ =  

10, 10, , ,RS FS v RS v FSπ π β β= ⇒ =  

For other dimensionless variable, the situation is more complex, because they involve multiple governing 
parameters. For example, consider π2: 

2
h

h

M t
P

π =
 

Because we know that 2, 2,RS FSπ π= it must be the case that 
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, ,

h RS RS h FS FS

h RS h FS

M t M t
P P

=  

Recall that 

 , ,h RS h FSP Pε=  

 tRS = tFS 

We can now solve for the size of governing parameter Mh in the reduced-scale model, by simple algebra on the 
equality above: 

 ( )
, ,

,,

h RS FS h FS FS

h FSh FS

M t M t
PPε

= , implying that , ,h RS h FSM Mε= . 

By following a similar procedure, we recognize that  

3 , ,
v

v RS v FS
v

M t
M M

P
π ε= ⇒ =

 

4 htπ μ= ⇒ , ,h RS h FSμ μ=  

5 vtπ μ= ⇒ , ,v RS v FSμ μ=  

6 tπ α= ⇒ RS FSα α=   

0
7

h

h

I
P

π = ⇒ 0, 0,h RS h FSI Iε=  

0
8

v

v

I
P

π = ⇒ 0, 0,v RS v FSI Iε=  

11
v

h

cP t
P

π = ⇒ RS FSc c=  

A rapid and methodical approach to deriving such formulas is given in Appendix 2. 

3.3.5.3 Parameters of the Reduced-Scale Model: Summary 
We have now derived the values of the governing parameters of the reduced-scale model. A few of these (the free 
governing parameters) were chosen so as to be computationally tractable and convenient, while (bound) 
governing parameters of the reduced-scale model were specified in terms of a coefficients times the 
corresponding parameter in the full-scale model – with the value of that coefficient chosen that the values of each 
dimensionless parameters is equal between the two models. 

 λ Mh Mv μh μv α ρv ρh βh βv c t Ph Pv 

Host ε ε ε 1 1 1 1 1 1 1 1 1 ε ε 

Table 2:  Scaling Coefficients for Coupled Infection-Health Services Model.  An entry in this table describes the 
coefficient by which a governing parameter in the reduced-scale model has been multiplied (in comparison to the 
corresponding governing parameter in the full-scale model). 
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The results of this investigation are shown the table above.  Note that the shaded scaling coefficients were 
explicitly chosen, while the values of the others were derived by exploiting the equivalence of the dimensionless 
parameters in the two models. 

3.3.6 Step 6:  Measure Dependent Governing Parameter from the Reduced Scale 
Model 

The next step in our analysis would be to parameterize the reduced scale model (using the scaling relationships 
specified in Table 2).  The reduced-scale model would then be run and a value for λRS measured.   

3.3.7 Step 7:  Calculate Dependent Variable for the Full-Scale Model  
The dimensionless parameter π1 is distinguished from other dimensionless parameters in that π1 is to be calculated 
from the measured output of the reduced-scale model.  From a measured value for the dependent governing 
parameter of the reduced-scale model (here λRS), we seek to extrapolate the value of the dependent variable for 
the full-size model (here λFS).   

Much as Step 5 (Section 3.3.5) calculated the values for bound governing parameters in the reduced-scale model 
in terms of known scaling coefficients and governing parameter values for the full-scale model, here we use the 
same process in reverse:  We use the this measured value λRS from the reduced-scale model to calculated λFS for 
the full-scale model. 

For our example, by the process described in Step 5, we note that the definition 1
h

t
P
λπ =  and the fact that 

π1,RS=π1,FS implies that 

 
1 1

1
FS

RS

λ
λ ε ε

= =
⋅

, 

and thus that 

 RS
FS

λ
λ

ε
=  

We have now derived the desired quantity – the dependent variable for the full-scale model – in terms of known 
quantities – the measured dependent variable of the reduced-scale model and a known (free governing parameter) 
scaling coefficient.  We have been able to deduce the value to be output by the full-scale model without bearing 
the high cost of simulating the model with the full population. 

As noted above, these results would change only slightly based on the dimensionality of the dependent variable. 
For example, if the dependent variable were of dimension 1/Time (rather than Host/Time), the dimensionless 
variables would be identical as to the previous case, with the exception of π1, which would then be given by the 
expression  

 1, Alternative tπ λ=  

and we would have FS RSλ λ=  

In general, we can change the dimension of the dependent variable without any need to change the 
parameterization of the reduced-scale simulation model.   Varying the dimensionality of the dependent variable 
would only affect the scaling required to go from a measured value of λRS to a corresponding value for λFS.  This 
means that we can use a single reduced-scale simulation model to deduce relations involving dependent variables 
of many dimensions, adjusting our only scaling strategy. 
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3.3.8 Empirical Results 
To illustrate some of the issues that arise when building scale models in the manner described here, Figure 1 
shows the fractional prevalence resulting from a full-scale individual-based model of a vector borne disease, and 
similar output from a series of successively smaller reduced-scale models constructed in accordance with the 
scaling relationships described above.  The experimental model was constructed in an agent-based fashion 
AnyLogic 6 (Advanced Educational Version) and is governed by the parameters shown in Table 1.  This model 
includes interacting populations of individually-represented Vectors (Mosquitoes) and Hosts (People).  
Transitions (e.g. contracting or recovering from illness) and interactions (e.g. Vector contact with a particular 
host) are Poisson distributed discrete events, according to transition rates given by the governing parameters. 

Despite the stochastic nature of the simulation, the trajectory of prevalence shows a high degree of regularity for 
human population sizes above 1000.  Prevalence curves for the full-scale model and reduced-scale models match 
closely down to and including a factor of 50x reduction in the human population (population 1000).  With 
populations below this point, however, the results increasingly diverge.  We believe that these effects result from 
the smaller sample sizes coupled with the discrete character of the population interactions. 

The empirical results shown here demonstrate the potential for application of the scaling procedure to greatly 
reduce computational burden of a non-trivial individual-based model.  The results do highlight the need to 
approach interpretation of scale model results with care.  Confidence in the results of scale models can be 
enhanced by performing sensitivity using different scaling levels, in a manner similar to that by which System 
Dynamics modelers use sensitivity analysis using timesteps to build confidence in the reliability of numerical 
integration results. 
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Figure 1:  Comparing Results of Full- and Reduced Scale Models.  Results show close agreement for Epsilon .02 and 
above; smaller reduced-scale models exhibit discretization artifacts 

  

 

3.4 Summary 
This section has built on the fact that any dimensionally consistent relations for a dependent variable  can be 
reformulated in a manner that involves only dimensionless parameters, and using a smaller number of parameters 
are needed than were present in the original system.  This reformulated model implicitly defines equivalence 
classes of similar systems such that each dimensionless parameter holds the same value across all members of the 
equivalence class.  We described a (primarily mechanical) process exploits this property of similarity to define 
reduced-scale individual-based models that yield results that can be precisely scaled up to derive output that 
would result from a full-scale simulation.  This fact is generally used to reason about constructing scale models of 
systems in the real world, but we have proposed here a novel use of this approach to create reduced-scale models 
of large-scale individual-based models. 
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4 A Comment on Heterogeneity 
Dimensional analysis has traditionally been applied for continuous physical systems in which a relatively small 
number of homogeneous parameters (e.g. Young’s modulus, density, temperature, etc.) describe the properties of 
a distributed parameter (e.g. spatially continuous) system.  There are compelling reasons for modeling fairly 
(parameter-wise) homogeneous populations using individual-based models – including the ability to represent 
non-memory-less processes, multi-scale phenomena, and detailed percolation across networks.  Nonetheless, 
given the strong benefits individual-based models offer for understanding the behavior of heterogeneous 
populations [1], it is important to consider how the approach presented here extends to such systems. 

It is straightforward to apply the approach above for systems exhibiting limited heterogeneity – for example, for 
individual-based models in which the governing parameter α differs widely across the population.  The absence of 
complications from heterogeneity reflects the fact that although the governing parameters of the individuals may 
vary in a heterogeneous system, the dimensions of the governing parameters of different individuals are identical.  
Adding limited heterogeneity to a system therefore does not affect the number of free governing parameter 
(Submatrix A by the conventions introduced in the Appendix).  The only practical difference caused by addition 
of limited heterogeneity is that more dimensionless parameters πj will generally be created.  With the exception of 
any free governing parameters (whose values are directly chosen), all of the heterogeneous parameters of a 
particular dimensionality will be adjusted in an identical fashion when creating a reduced-scale model. 

Consider a variant of our example from the last Section. While we previously assumed that all individuals in the 
population share values for recovery time (α), assume now that individuals may be associated with any of k 
distinct values of αi, 1≤i≤k. These values all share identical dimensionality 1/Time.  The dimensional set matrix 
for the heterogeneous system would remain very similar to Figure 2; we would simply replace the column for α 
with k columns, one for each αi.  Dimensionless parameters πj would be created for each such governing 
parameter αi.  Because the dimensions of each αi governing parameter are identical to that the dimensions of α, 
the dimensionless parameter associated with each of the new governing parameters would have precisely the same 
form as did the dimensionless parameter π2 associated with α.   

The situation is only superficially more complex if we consider heterogeneity in a free governing parameter such 
as βv. In such a case, just one of heterogeneous parameters (say, βv1) would be a free parameter in Submatrix A; 
all the others would be placed with the bound parameters in Submatrix B (for example, listed just before time t).  
In accordance with the approach described above, the value of the free governing parameter βv1,RS in the reduced 
scale model would be freely chosen by the modeler.  All other governing parameters βvi would be associated with 
dimensionless parameters.   

At an operational level, introducing limited heterogeneity does not in general complicate the creation of scale 
models.  The analysis is simply the same as with aggregate parameters; all that is required is systematic scaling of 
additional governing parameters to realize the scale model. 

Despite the mechanical simplicity of reflecting heterogeneity in the analysis, the discrete nature of individual-
based models imposes an important limitation.  Specifically, the approach presented here assumes that the 
cardinality of the reduced-scale population is sufficient to maintain the count of heterogeneous parameter classes 
that were seen in the original system.  (In the notation above, it assumes that the population in the reduced-scale 
model is sufficiently large to represent all k heterogeneous values.)  For example, this approach should work fine 
if there were 100 (k) different values of αi in both a full-scale population of 106 and in a reduced-scale population 
of 103. Such straightforward scaling will not be possible if we make use of a reduced-scale model with a 
population size that is too small to represent the heterogeneity in the full system (for example, a reduced-scale 
population size of 50 if we need to represent 100 different values of parameters), as it will not be possible to 
associate an individual with each of the reduced-scale parameters.  If we wish to consider multiple dimensions of 
heterogeneity, the reduced-size model would need to be of sufficient size to represent combinations of these 
values. 



16 

 

5 Limitations 
This paper has described a rigorous, systematic and surprisingly general approach for deriving a reduced-scale 
models whose results can be straightforwardly scaled up to yield results representative of a corresponding large-
scale model.  These approaches draw on the theory of similitude and dimensional scaling that have been 
extensively exploited in engineering and the applied sciences. 

While we believe that the basics of the described approach are sound, the approach is not without some 
drawbacks and significant research challenges remain for practical application.   

Perhaps the biggest challenge was mentioned in the previous section: The use of dimensional scaling for highly 
heterogeneous populations.  Given the strong motivations for using individual-based methods for such 
populations, it is very important to work to identify systematic means of representing them in reduced-scale 
models. 

A related issue concerns discretization effects.  Both theory and empirical observation by the author suggest that 
the discrete cardinality of populations poses challenges to achieving full similitude with smaller-scale reduced-
size models.  In addition to heterogeneity scaling concerns, other discretization artifacts can also become 
pronounced for smaller models.  For example, stochastic departures may reflect the fact that as one lowers the size 
of the reduced-scale population, discrete probabilistic outcomes for the small counts of individuals in reduced-
scale model may differ from those of the full-scale model.  

6 Conclusion 
The System Dynamics community is increasingly applying individual-based models for insight.  Such models 
offer particular value for investigating the effects of targeted interventions and for studying systems with 
populations exhibiting high heterogeneity, complex and dynamic network structures.  Unfortunately, simulation 
of such models for large populations is often extremely expensive.   While it is desirable to gain insight into the 
behavior of models using reduced-scale populations, naïve construction of such reduced-size models can yield 
erroneous conclusions.  Within this paper, we have described a rigorous, systematic and general technique for 
building such models.   

While the described technique requires further development to address the full richness of modern modeling 
practice, we believe that it has considerable potential.   

More broadly, we believe that dimensional analysis offers many inviting avenues for future research.   
Specifically, we believe there are high benefits to be gained by applying dimensional scaling theory to model 
analysis [6].  We believe these benefits are likely to be particularly substantial for individual-based models which 
are less tractable to closed-form analysis.  We believe that the concepts and associated tools of incomplete 
similitude and intermediate asymptotics [9, 12] hold particular promise for further simplification of dimensional 
reasoning for individual-based systems.  By building on dimensional approaches directly confronting the issue of 
multi-scale analysis and approximation, renormalization group theory may also be of great value. 
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Appendix 1:  Derivation of Dimensional Matrix 
Section 3.1 described the Buckingham Π Theorem.  This theorem shows that any dimensionally homogeneous 
relation giving the value of a dependent variable x1 in terms of other model parameters can be reformulated as an 
equation involving only dimensionless parameters Πi.  This section presents a systematic matrix approach for 
identifying a complete set of dimensionless variables needed for such a reformulation.  Interested readers may 
wish to refer to the more complete exposition of this approach in [8].  

The matrix approach is motivated by the fact that in determining the expressions for a particular variable, we are 
simply selecting the exponent for each governing parameter xi in that expression.  This exercise amounts to 
solving a set of simultaneous linear equations specifying constraints on the exponents of each governing 
parameter xi.  The equations are weighted sums of these exponents, reflecting the fact that multiplying variables 
sums exponents for each dimension, and that raising a governing parameter to a power multiplies all dimensional 
exponents for that governing parameter by that power.  The constraints enforced by these equations reflect the fact 
that in order to yield dimensionless products, the sum of the exponents associated with each dimension must total 
to 0. 

Following [8], we define 4 matrices, arranged as follows.  The dimensions of each matrices are enclosed in 
parentheses following the matrix name.   

 Governing Parameters (xi) 

x1 x2 x3 … xn-D xn-D+1 … xn 

D
im

en
si

on
s d1  

B Matrix (D×(n-D)) 

 

A Matrix (D×D)  

dD 

D
im

en
si

on
le

ss
 

V
ar

ia
bl

es
 

π1  

 

D Matrix (Identity; (n-D)×(n-D)) 

 

 

C Matrix ((n-D)×D) 

 

 

… 

πn-D 

Figure 2: Dimensional Set Matrix Structure 

Matrices A and B within Figure 2 are to be specified by the modeler.  Each entry (i,j) in these matrices specifies 
the exponent associated with dimension di within the dimension product of powers of xj.  Thus, a given column j 
of matrices A or B represents the exponents associated with each successive dimensions di within the dimension 
of the corresponding governing parameter xj.  For example, if governing parameter xi were of dimension 
Person2/Time = Person2*Time-1, the entry in the Person dimension row for xi would be 2, while that in the Time 
dimension row would be -1.  The entries for any other rows would be 0. 

The A and B matrices can be populated by means of a simple dimensional analysis on each governing parameter 
xi in turn – where for each such xi (row) we simply read off the exponent for each dimension (row).  The 
governing parameters chosen for matrix A must be dimensionally independent (in the sense that no product of 
powers of these governing parameters can be dimensionless), but may be arranged in any order.  These 
parameters are generally those which the modeler believes will have the greatest influence on the dependent 
variable and those that we wish to explicitly specify for the reduced-scale model.  The other parameters can be 
determined from them. 

Entries for matrices C and D have very different meaning than do the entries in A and B.  An entry in matrices C 
and D specifies the exponent associated with a particular governing parameter (that associated with the column) 
within a particular dimensionless variable (that associated with the row).  Thus a given row of Matrices C and D 
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specifies the exponents of each governing parameter within the specific dimensionless variable associated with 

that row.  For example, if 
2

1
1

3 4

x
x x

π =
 
then the entry for row 1 of C and D would have a “2” in the first column 

(corresponding to x1, a -1 in the 3rd column (corresponding to x3) and a -1/2 in the 4th column (corresponding to x4 
 

Matrix D is of fixed structure (the (n-D)×(n-D) Identity matrix) and thus requires no modeler specification.   

Matrices A, B and D are all populated directly by the modeler, using previously-known information. By contrast, 
matrix C must be calculated in order to determine the definitions of the dimensionless variables Πi in terms of the 
xi.  Matrix C is calculated from of Matrices A and B.  In what amounts to a solving of the implicit set of 
simultaneous linear equations governing the exponents of the governing parameters, we determine the contents of 
C as 

 ( )1 T
C A B−= −  

It is notable that the A needs to be invertible – hence the requirement for the dimensional independence of the 
governing parameters of A.  

Once matrix C is determined, the definition of each dimensionless variable as a product of powers of the 
governing parameters xi can be read off from rows of C and D.   

It bears emphasizing that the dimensionless variables identified through this analysis are specific to both the set of 
independent governing parameters chosen (those associated with the columns of matrix A) as well as to the 
dimensionality of the chosen dependent variable.  The choice of the dimensionally independent governing 
parameters will in general have a large impact on the dimensional variables identified.  By contrast, choosing 
dependent variables of differing dimensionality will only affect8 the expression for π1.   

  

                                                      
8 Recall that the dimension of the dependent variable is only encoded within the leftmost column of submatrix B.  Reflection 
on the linear algebra involved reveals that this column only influences the topmost row of  submatrix C (the row that 
indicates the other independent governing parameters that play a role in π1).  Thus, the expressions for all dimensionless 
variables other than π1 would remain the same.  This bears emphasizing, as it means that the value of the Ψ expression will 
remain the same regardless of the dimensionality of the dependent parameter. 
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Appendix 2:  Derivation of Scaling Relationships 
This appendix provides a straightforward and methodical means of deriving the scaling relationships between the 
bound governing parameters of the reduced-scale and full-scale models (such as those manually derived in 
3.3.5.2) 

Reflecting on the structure of the dimensional matrix (see Appendix 1, and the example in Table 1), we can 
recognize that each dimensionless constant πi is defined as the product of a unique (bound) governing parameter 
(the diagonal entries in Submatrix D) with some product of powers of the r free variables (the columns in 
Submatrix C; for the example, c, Ph, and Pv).   

Given this pattern, that an equation establishing πi,RS=πi,FS can be transformed directly into an equation giving the 
scaling coefficient for the (bound) governing parameter of interest in terms of a product of power of the 
coefficients by which each relevant free parameter was reduced.   

All we need to do to arrive at such an equation is to divide both sides of the equation by the product of powers of 
the free governing parameters for the reduced-scale model, and by the value of the governing parameter of interest 
in the full-scale model (all of which we assume to be non-zero).  The resulting formula specifies the ratio of the 
(bound) governing parameter in the reduced-scale and full-scale model (the scaling coefficient of that bound 
parameter) in terms of the product of powers of the ratio of each relevant free governing parameters in the full- 
and reduced-scale models (the scaling coefficients for the free parameters).   

For example, consider 2
h

h

M t
P

π = .  Because we know the value of this dimensionless parameter must be the same 

in the full- and reduced-scale models, we must have 

 , ,

, ,

h RS RS h FS FS

h RS h FS

M t M t
P P

= . 

Dividing both sides by the product of powers of the relevant free governing parameters in the reduced-scale 
model and by the value of the bound parameter in the full-scale model (Mh,FS) yields 

,

, ,

,

FS

h RS RS

h FS h FS

h RS

t
M t
M P

P

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
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⎝ ⎠  

But each of the ratios above is something familiar.  The ratio on the left represents the factor by which the bound 
parameter Mh is scaled in the full- and reduced-size models. The ratios on the right are exactly the ratio between 
full- and reduced-scale magnitudes for each of the free governing parameters – the scaling coefficients such as ε 
we chose in section 3.3.5.1.  For the example, we chose 

 , ,

, ,

h RS h FS

v RS v FS

P P
P P

ε

ε

=

=
 

 t,RS =t,FS 

And thus the ratios above are as follows: 

 1FS
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t
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and 

,

,

1h FS

h RS

P
P ε

= . 

As a result, we can see that the scaling coefficient for the bound parameter Mh is 
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M t
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. 

Because of the structure of the dimensional matrix, the process we have used here is general, and is applicable as 
long as the free and governing parameters are non-zero.   

This approach allows us to write down the scaling coefficient for each bound governing parameter by inspection.  
Specifically, we can immediately derive the formula for the ratio of a reduced-scale bound parameter to the 
corresponding full-scale bound parameter by starting with the product of powers of free parameters occurring in 
on the right hand side of a dimensionless variable and substituting in the reciprocal of the scaling coefficient for 
each free parameter wherever that free parameter occurs in that expression.  

Consider, for example, the bound governing parameter Mh, associated with dimensionless parameter 2
h

h

M t
P

π = . 

By the procedure we have outlined, the ratio of ,

,

h RS

h FS

M
M

 will be given by 
1
1

ε

ε

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

By the same token, consider  
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cP t
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Using the same approach, we can write down by inspection the value of the ratio RS

FS

c
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