
A methodology for Integrating and Synchronizing the System
Dynamics and Discrete Event Simulation Paradigms

Magdy Helal*, Luis Rabelo*, Jose Sepúlveda*, Albert Jones**

*Department of Industrial Engineering & Management Systems,

University of Central Florida, Orlando, FL, 32816
mhelal@mail.ucf.edu , lrabelo@mail.ucf.edu , Sepulved@mail.ucf.edu

**National Institute of Standards and Technology
Gaithersburg, MD, 20899

albert.jones@nist.gov

Abstract: With the adoption of integration and system perspectives in managing the
manufacturing systems and the pressure imposed by the increased competition and rapidly
changing business environment, the need has arisen for new approaches for simulating the
manufacturing enterprise. We have proposed SDDES; a hybrid System Dynamics Discrete Event
Simulation approach to simulating the integrated manufacturing enterprise. SDDES offers
comprehensive simulation models that encompass all management levels and recognize the
differences between them in terms of scope and frequency of decision making as well as the
levels of details preferred and used at each level. SDDES maintains the integrity of the two
simulation paradigms and can use existing/legacy simulation models without requiring learning
new simulation skills. In this paper we describe the modular structure of SDDES, our method to
synchronize and coordinate SD and DES, and the functional model of the SDDES controller,
which manages the integration of the two simulation methodologies.

Keywords: Hybrid continuous-discrete simulation – Manufacturing enterprise - System
dynamics – Discrete event simulation

1. Introduction

The advances in information and computing technologies in addition to the
unprecedented levels of competition and fast pace of changes in the business environment have
created a more flattened enterprise system and changed the way enterprises should be managed.
This is creating challenges to using simulation tools. The presence of manufacturing and non-
manufacturing functions in the manufacturing enterprise, the different types of behavior in the
system, differences between management levels in the scope of planning, frequency of decision
making, and levels of details they deal with, indicate that a single simulation approach can not
offer all that is needed in a simulation of such a complex system.

The traditional use of discrete event simulation (DES) to simulate the manufacturing
systems has narrowed the scope to detailed statistical analyses at the operational levels of the
system. At that level, the main concerns have been the flow of materials and the levels of
inventories and work in process, and the performance at the individual level of resources, units
of products or processes (Smith, 2003; Bonder and McGinnis, 2002; Lee et al., 2002a; Wu, 2002;
1992; Law and Kelton, 2000; Kosturiak and Gregor, 1999; De Souza et al., 1996; Pegden et al.,
1990; Carrie, 1988). The need to simulate the whole system (aggregate and detailed management

level functions) has challenged DES, which was inadequate to approximate the continuous
behavior in the system generally and particularly at the aggregate levels, or communicate
appropriately the financial computations to higher management (Lee et al., 2002a; Johnson and
Eberlein, 2002; Barton et al., 2001). DES works effectively with problems of narrow scopes, but
it is “… incompatible with a global point of view” (Lin et al., 1998). And it does not address the
stability of the system (Rabelo et al., 2005) that should be considered at an aggregate level before
any detailed analyses can be conducted (Towill and Edghill, 1989). Add to that its high demand
for data and its tedious data preparation processes. There are always detailed data available for
the manufacturing functions. But for the aggregate management levels data is not usually
available and in most cases only rough estimates exist (Zulch et al., 2002; Mandal and Sohal,
1998; Anthony et al., 1989).

Meanwhile, SD has been successful as a system thinking approach that targets top
management levels with a comprehensive integrative perspective, with relatively minimal data
requirements. SD is appropriate for modeling large scale systems and the higher levels of
decision making where aggregation is preferred. It focuses on the policy decisions that are
embodied in the feedback loops, and not on individual localized decisions. Nevertheless, using
SD at the operational level of the manufacturing system has failed to offer the needed granularity
(Godding et al., 2003; Barton et al., 2001; Baines and Harisson, 1999; Bauer et al., 1982). The
same was observed by Choi et al. (2006) who could not use SD to model the performance of the
individual processes in a software development system. In addition, while SD permits the study
of the stability of the system over the long range, the trends of behavior that it generates do not
indicate what specific actions to be made and at what values of the action parameters. Such
specifity requires more detailed considerations that SD does not seem to work with, while DES
has been effective at.

Consequently, we have argued (Rabelo et al., 2005; Helal and Rabelo, 2004) that SD and
DES can complement each other to offer the needed tools to meet the needs created by the
modern, integrated manufacturing enterprise system. In this paper, we describe the details of our
proposed SDDES simulation method.

The rest of the paper is organized as follows: Section 2 provides a review of literatures
supporting the proposed methodology. Section 3 describes the modular structure of the SDDES
simulation method and the formalism to describe and communicate the SD and DES modules.
Section 4 proposes a new synchronization mechanism to coordinate SD and DES. The
synchronization mechanism explicitly recognizes and respects the integrity of the two simulation
paradigms. In Section 5 the SDDES controller is described. The controller administers the
integration of the simulation modules and offers the user interface. Section 6 concludes this
paper.

2. Literature Review

Simulating manufacturing systems has been dominated by DES. Many contributions SD
can make in this area, especially integrated systems. SD can capture the causal relationships that
are not captured by other approaches that are based on the flow diagramming approaches; DES
and other object oriented techniques (An and Jehn, 2005). Further SD offers the ability to model
qualitative and soft factors (e.g. level of commitment, level of management support, etc.) as was
showed by Sterman et al. (1997) who modeled the management’s attitude towards various
departments in the company after implementing a Total Quality Management program.

Data related to manufacturing activities in manufacturing systems are always available
and at very detailed levels where as data for the non-manufacturing functions, usually at the
higher levels of decision making are only available as rough estimates and expert guesses (Zulch
et al., 2002; Mandal and Sohal, 1998; Anthony et al., 1989). The strategic level is the least
systematic process. Operational level decision making uses current, detailed, accurate data. The
tactical level falls in between. This obviously has to do with the expected quality of the
simulation results that can be obtained if a data demanding technique such as DES is used at the
higher levels of management. SD also facilitates conducting designed experiments at the
business level (Ashayeri et al., 1998); something that has been available at the detailed levels
using DES.

However, while SD has an advantage at the aggregate levels, it can face problems at the
operational detailed levels. SD is not believed by many to be suitable for the more detailed
operational level activities (Lin et al., 1998; Wiendahl and Breithaupt 1998). Wiendahl and
Breithaupt (1998) experimented with simulating manufacturing systems using techniques based
on direct use of the automatic control theory and concluded that such continuous simulation
approaches (of the control theory) do not lend themselves easily to model the discrete nature of
the manufacturing functions. Lin et al. (1998) attempted to develop SD-based manufacturing
system modeling library. For instance, a module in the library is the converting activity module,
which has inputs (materials), outputs (products) and time (labor). It is used as a process in a
manufacturing line. Inside the module, a stock variable accumulates time allocated to the process
while a flow variable represents the passage of the time. Further, this module is a part of a bigger
system for which a global time is observed and the passage of time is executed at different levels.
This was applied to a job shop in a test of the addition of new equipment; an application where
DES has been effectively applied for decades. The manufacturing system was not viewed as a
whole; to include the aggregate level. Thus SD did not contribute much. In fact this negatively
affects SD’s intuition, introduces too much details not consistent with SD, and it is an
approximation of DES capabilities while DES already exists.

Keenan and Paich (2004) used SD to build a model of GM and the North American auto
industry, to assist GM senior management assess the existing policies and improvement
initiatives that had been implemented. The initiatives were considered successful but concerns
were that the combined impact of them had not met the performance objectives in terms of
market share and profitability. The model was comprehensive; including macro-economic
variables, market, dealerships, customer behavior, and processes at the various manufacturing
facilities located at geographically distant locations. Yet SD as a methodology failed to offer
desirable levels of details. Particularly the model could not include the customers’ behavior at
the household level, which is an important aspect of analyzing the auto market given the high
competition and the many brands and models offered every year. The model also could not reach
the details of the manufacturing processes and the operations of the dealerships. Only overall
measures and indicators were collected regarding the potential policy alternatives. The question
that was raised by the senior managers was about where exactly should they intervene and how
specifically should the resources be allocated. The trends and the macro level indicators needed
to be extended to become actionable.

This has been the case with Godding et al. (2003) who found that the modeling and
numerical simulation methods of SD did not provide the needed level of granularity to model the
complex stochastic material flows and associated control algorithms for a semiconductor supply
network without significant extension. They chose to use DES instead of SD. Bauer et al. (1982)

also found SD limiting their abilities to model the processes at a semiconductor manufacturer
and they limited their analysis to localized units. In a different situation, Martin (2001) found
that SD could model the environment of the software development process, but for modeling the
process itself DES was more effective. He commented: “… we can not ask a SD model questions
about the size or complexity of a module of code, because code modules are modeled as
individual entities … we can not ask a DES model about the behavior of continuous variables
and feedback loops”.

On the other hand the challenges facing DES in modeling integrated manufacturing
systems are serious. Tow main issues face enterprises as they try to exploit the capabilities of
simulation, as observed by the vendors of Arena software. The first is broadening the use of
simulation effectively throughout the enterprise in a consistent coordinated way. The second is
enhancing the value of the simulation initiatives to the enterprise by leveraging investments in
tools and methodologies (Babat and Sturrock, 2003). Gregoriades and Karakostas (2003) and
Chang and Makatsoris (2001) suggested limiting the use of DES to certain problem areas; where
there are few alternative, short range horizons, and where detailed analysis is needed. Huang et
al. (2003) did not believe a single DES model could be used for all of the three levels of
management. Lee et al. (2002a) recommended using analytical models for the operational level
activities, DES for the tactical level activities, while for the strategic levels they recommended
hybrid discrete/continuous simulation models.

2.1 Hybrid Simulation

The limitations of DES at the aggregate levels and in approximating continuous behavior
and the limitations of SD at the detailed levels imply the need to develop hybrid continuous-
discrete models. Approximating continuous behavior by discrete models can not guarantee
accuracy; overestimates or underestimates will likely be obtained (Lee et al., 2002a). The
proposed SDDES method is hybrid continuous-discrete approach. There are two approaches to
develop hybrid simulations: the hybrid state transition machine (Maler et al., 1992; Harel, 1987)
and the DEVS&DES formalism (Ziegler et al., 2000). Both approaches recognize two ways of
interactions between discrete and continuous components in a hybrid simulation (See Figure 1).

Discrete event causing sudden
change in continuous variable

Continuous variable crossing a
threshold schedules a discrete event

Figure 1: Types of interactions between continuous and discrete components

The hybrid state machine is based on the state chart diagram of the Unified Modeling

Language (UML). It is a directed diagram representing states of the system and the transitions
between them. Most of its dynamic characteristics were described by Harel (1987). Maler et al.
(1992) incorporated the continuous behavior into the discrete state diagram. Some system
variables are to be modeled as continuous by differential/integral equations and then threshold
values for these variables are defined. During the simulation run when a variable reaches a
threshold a discrete event is triggered at the state diagram and a transition from a state to a state
to another may be taken. Only events can update the system state. Also, upon the execution of an

event in the discrete part, a continuous variable can be assigned a new value regardless of its
mathematical formulation.

The DEV&DESS formalism combines Ziegler (1976)’s Discrete Event System
specification (DEVS) formalism and Differential Equations System Specification (DESS)
formalism, to describe hybrid systems. DEV&DESS combines the sets of inputs, outputs, states,
and the transition, output, and rate of change functions of the two original formalisms into a
unified format to specify the hybrid system. Additionally the DEV&DESS uses the condition
function to connect the continuous variables to the discrete components of the system. Once a
threshold is crossed, the condition function is activated to cause an event to be scheduled at the
discrete part and an update of system state to be executed.

The two approaches are fundamentally similar:
1. Both were developed based for control situations; a digital (discrete) system

controlling a continuous environment.
2. Running a hybrid simulation is a process of alternating between a discrete phase and a

continuous phase. In the discrete phase the state can change but time cannot advance.
In the continuous phase the time advances but system state does not change.

3. Events drive the simulation model and only events update the system state.
4. Continuous calculations are performed in the continuous phase between the discrete

events, starting with the new state after the event occurrence.
5. The impact of the continuous calculation is communicated to the discrete components

by generating a special type of events (state event) based on the values of the
continuous variables as compared to predefined threshold values

6. Both favor the use of small-sized objects for which states can be easily enumerated as
well as transitions between them.

The behavior of a continuous variable in a hybrid system based on either of the two

approaches can be as in Figure 2, in which a continuous variable behaves as continues between
events. The (x, y) indicates an event number and its time stamp. The continuous variables must
accept abrupt changes in their values by the occurrence of the discrete events. A segment of
continuous calculations between two events is not a continuation of the previous segment.
Whenever the continuous variable reaches a threshold level, a state event is triggered at the
discrete part. Such behavior can be valid in applications such as controlling temperature in an
industrial furnace, or controlling the movement of a robot arm and the like, where the threshold
approach is applicable. But it is not realistic to expect all continuous systems to be increasing or
decreasing until crossing a threshold value. In fact the oscillating behavior of continuous
parameters such as inventory, productivity, quality, etc. is more expensive and dangerous in a
manufacturing system than a trend in any of them. A threshold can not be used to control such a
behavior. Management would work to smooth out oscillations and achieve stability not to
prevent a certain critical value if a critical value could be defined. Policies have to be changed
and then time should be allowed before realizing the impact of changes. According to SD, stocks
can only be influenced by flows over some delay times.

Time

Threshold
Level

State
Event

Cont. step Disc.
step Cont. step

Cont.
step

Cont.
step

Cont.
step

Disc.
step

Figure 2: Intermittent continuous behavior in control-based hybrid simulation

2.2 Distributed Simulation

In distributed simulation, loosely coupled simulations interact intensively at certain
points in time. Distributed simulation, and parallel simulation as well, are concerned with issues
introduced by distributing the execution of DES programs over multiple processors and
computing platforms. The technologies were motivated by the needs of the military applications
to integrate the geographically distributed systems (simulations and others). Currently the High
Level Architecture (HLA) dominates the field as the framework for developing distributed
simulations. Still the military uses are main drivers (Bodoh and Wieland, 2003; Borshchev et al.,
2002; Fujimoto, 2001; 2000).

In industrial applications, distributed simulation usage is very limited (Boer et al., 2006a;
Lendermann, 2006). A recent survey (Boer et al., 2006a; 2006b) has showed that industry
practitioners depend heavily on the commercial-of-the-shelf (COTS) simulation packages, which
offer very limited support for the HLA standard. COTS vendors do not see direct benefits in
offering HLA support in their packages, given that HLA is still military-directed and too
complex for industry applications. Unlike military applications, industry wants fast and direct
results at the lowest expenses, for which HLA as well as the concepts of distributed simulation
would add too high overhead technically and financially. Vendors also do not see much
economical benefits in collaborating with each other.
 Distributed simulation is related to SDDES as SDDES combines two different simulation
paradigms. This makes it possible for some causality violations to occur during the simulation
run. Distributed simulation uses the conservative (Chandy and Misra, 1978) or the optimistic
(Jefferson, 1985) mechanisms for synchronization. Both use events and their time stamps to
synchronize the participating simulations. The time bucket (TB) approach was introduced by
Stienman (1991) as a simple synchronization approach for CIM settings. The TB allows
simulations to advance time in fixed time steps (time buckets) and interact at the end of each
bucket. This was inspired by the MRP system where a long-range plan is divided in execution
periods/buckets.

Although conservative and optimistic mechanisms as well as the TB method use events,
the TB method offered more flexibility when we considered synchronizing SD and DES. TB is
consistent with SD as a time driven approach and it is not inconsistent with DES as an event
driven approach. Several variations of the TB method have been developed. Stienman (1992)
developed a variable size TB method that used events and their consequences to decide the TB

size during the simulation run. Fujii at al. (1999) proposed the phased TB method, which used a
fixed size bucket but allowed simulations to advance in phases such that a set of simulations (e.g.
processes) advance time to the end of the TB then a central simulation (e.g. transporter or a robot
system) advance its time while handling data generated by the first set of simulation. Ma et al.
(2001) used continuous simulation tools and allowed interactions during the TB. However he
limited such interactions to the on/off timeless type of actions taken by a programmable logic
controller unit. Bochhima et al. (2005) synchronized continuous and discrete simulations
following the threshold approach of Ziegler (2000). TB in their approach was the time between
events in the discrete simulations. The continuous simulations run between the discrete events or
until crossing a threshold.

In this work we propose a new synchronization mechanism that uses TB concepts. The
new mechanism does not need to use events and does not require one simulation paradigm to
dominate the other. This is described later in this paper.

3 The SDDES simulation approach

Based on the review of literatures, we argue that:
1. Integrated manufacturing enterprise systems pose challenges to the available simulation

tools.
2. DES suffers several shortfalls in offering holistic models of the integrated enterprise.
3. SD assumes aggregate management level perspectives in a systemic integrative approach yet

it falls short in adequately modeling the detailed, short-term decision making level.
4. Hybrid continuous-discrete simulation approaches offers the ability to accommodate all types

of behavior in the integrated system but they assume control situations and tend to suppress
the continuous behavior.

5. Distributed simulation approaches offer favorable features that could improve and facilitate
the building of large-scale simulation models of the integrated manufacturing enterprises, but
are not yet exploited in such areas for technical and economical reasons.

A combination of SD and DES simulation paradigms has the potentials of satisfying the

needed characteristics in the simulation model of the integrated manufacturing enterprise. The
integration of SD and DES as proposed in this work offers an inexpensive technique that
maintains the existing simulation expertise in simulating the manufacturing systems. Legacy
system models can be utilized and no new programming skills are needed to use SDDES.
SDDES also does not assume certain situations as do the existing hybrid simulation approaches.

The following sections describe the components of the SDDES method. Figure 3 depicts
a roadmap in which the review of current practices in using simulation approaches has indicated
the potentials of integrating SD and DES. SDDES is a hybrid continuous-discrete method for
simulating the manufacturing enterprise. The size of the simulation model suggested following a
modular structure. Modules should be formally described for better model management and
communication among modelers. The SDDES formalism is proposed for that purpose. And since
SDDES combines two different simulation paradigms, it should also be viewed from the
perspective of a distributed simulation arrangement. Specifically, the SDDES synchronization
mechanism is proposed to coordinate and synchronize the interactions among the SD and DES
simulation modules. The SDDES controller is the main unit in the SDDES simulation method. It
manages the integration, implements the synchronization, and offers the user interface. The
following sections describe SDDES as implied by Figure 3.

Discrete
Simulation

System
Dynamics

Hybrid
Simulation

Manufacturing
Enterprise

Need that can be fulfilled by
SDDES

SDDES = SD and DES

Continuous vs Discrete
paradigms

Hybrid method for simulating
integrated manufacturing

enterprise

Distributed
SimulationModular structure

for communication and
management

Synchronization
mechanismFormal

standardized specification

Synchronization
Controller

Figure 3: Roadmap toward SDDES

3.1 Layout of the SDDES System

SDDES consists of an overall SD model for the manufacturing enterprise system and a
number of DES models built for selected units in the system as dictated by the analysis needs.
The models will interact through the SDDES controller. Figure 4 shows the SD model at the top
(divided internally into a number of modules; 3 in the Figure), the SDDES controller in the
middle, and a number of DES models (3 in the Figure) at the bottom.

Figure 4: Layout of the SDDES system

Management would use the model for the purposes of testing policies before deciding on
implementing them, to confirm the estimated behavior based on enterprise-wide feedback.
Management would use the model to investigate the feasibility and desirability of the various
programs and initiations in the organization as well as use it to test the resource allocation
process to decide on the strategic plans. The feedback structure in the model, in addition, helps
better understand the dynamics of the interactions among the system components. In addition,
the model can be used as a comprehensive performance measurement system and this can be
accomplished by building a balanced scorecard at the top of the model components and
parameters. Helal and Rabelo (2004) have discussed the potentials of building dynamic balanced
score cards based on SDDES.

3.2 The SDDES Modules
 Modules facilitate the model building process, especially when modeling the complex
structure of the manufacturing enterprise. They also simplify modifying and extending the model
when desirable. Each module has a well defined function, which should have a set of inputs and
outputs to be ready to interact with other. The stock management model (Sterman, 1989, 2000)
offers a good basis to modularize SD models. DES modules are defined based on the functions
they will perform and built from scratch if do not already exist.

3.2.1 The SD Modules

If SD models already exist then they can be modularized such that they are based on the
stock management model. New models can utilize the stock management model. We
recommend, but it is necessary in SDDES, the use of the stock management model to standardize
the building of SD models. Sterman (2000) listed and explained numerous examples for using
the stock management model in business systems and other types of systems. Modularizing is an
iterative process (Figure 5). The outcome of the process is a set of modules with the inputs and
outputs that are to be exchanged between them so they function correctly. The defining of
modules should be simultaneous for all SD modules and the DES modules, if necessary.

It should be noted that the modularized SD model is still a single SD model. Modules are
logical for the purposes of integration with the DES models and for communication and model
management uses. SD modules are treated as sections in the SD model, yet are formalized (using
the SDDES formalism) and defined at the SDDES controller as separate units. Not actually
dividing the SD model maintains the integrity of the feedback structure of SD while simplifying
working with the model in SDDES.

The module represents a function. The inputs to a module are variables that are not
normally under the control of the unit manager, or normally included in the core definition of
that function represented in the module. To recognize the interactions that unit would have with
other units the definition of it could need to be modified based on the requirements of the other
modules, following the iterative process of Figure 5.

Figure 5: Developing SD modules

The generic SD module can be represented as in Figure 6. Inside the module is a stock

management model that is a model of the function of the module. Not all details need to be
shown. Yet the sets of inputs and outputs must be well defined. The xPortIn __ represents the
input ports of communication where the module receives inputs from other SD or DES modules
(x represents the number of the port). These are connected to the appropriate variables in the
model. The xPortOut __ represents the output ports of communication where the module
offers outputs to other modules. Communications through the ports are managed and
synchronized by the SDDES controller. Defining the inputs and output is part of the module
definition and they are used in the formalism of the module.

Supply On Order Stock
Order Rate Acquisition Rate Loss Rate

Acquisition Delay
+

-

+
+

Adjustment for
Stock level

Adjustment for
Supply On Order

level

Desired Stock

Time to
adjust Stock

Desired Supply
On Order

Time to adjust
Supply On Order

Expected Loss Rate

Indicated
Orders

Figure 6: Generic SD module for SDDES

3.2.2 The DES modules
 The role of the DES modules in the SDDES is to provide the needed detailed analyses.

SDDES allows the use of small-sized DES models instead of the usual practice of building one
large DES model of all production functions. This greatly cuts the model development time and
expenses. The DES modules are built to interact with one or more SD modules or with each
other. The DES modules are complete discrete simulation models that are of narrow scopes. An
iterative process to develop DES modules is shown in Figure 7. It starts with a valid DES model
for the function of concern. Inputs and outputs and modules to interact with are then identified
then the modules are described using the SDDES formalism. Figure 8 shows a representation of
a generic DES module. Any DES tool can be used. In this work Arena
(http://www.arenasimulation.com/) is used in building DES modules while Vensim
(http://vensim.com/) is used for the SD part.

Figure 7: Module development process for DES modules

In_Port_1

In_Port_2

In_Port_3

In_Port_n

Out_Port_1

Out_Port_2

Out_Port_3

Out_Port_n

Figure 8: A generic DES module

3.3 The SDDES Formalism
For better model development, management, and communication, the SDDES formalism

is proposed to offer a generic description of modules. It offers a standardized structure to build
and prepare the interactions of the modules. Users and modelers would only need to provide the
specific information to be plugged in the placeholders in the formalism in order to distinguish
one module for the others. The formalism is also necessary for the development of a user
interface (part of the SDDES controller). The formalism dictates what information the user
should provide to define modules. The data of the inputs and outputs and their ports as stated by
the formalism are inputted at the controller’s user interface along with the type of formatting
needed and the timing of the transactions. The functions of the SDDES controller as described
later in this chapter depend on the accuracy of defining the formalisms for the modules.

Three sets and two descriptive elements of information are needed in the SDDES
modules formalism. Unlike the DEV&DESS formalism, states or state transition functions are
not parts of the SDDES formalism. A module of SDDES is represented as in equation 1 in the
SDDES formalism terms, where m refers to a SD or DES module.

),,,,(TBPYXm Τ= (1)

The sets of the SDDES formalism are defined as follows:

• Τ : type of the module; SD or DES module.
• TB : time bucket (described later) of the module; it indicates the run segment length of a

DES module. In case of a SD module it is set toCONTINUOUS .
• P : set of all variables in the current module. Any variable can be requested by any other

module. The same variable can be sent to more than one module.
• X : set of module inputs; variables received from other modules. X is specified as

follows:

{ }{ }mmssms PUOutPortsopmMsaPvMmUopsvmX ⊂∈−∈∈∈= ,,,,|),,,,((2)

In Equation 2:

o m indicates the current module
o v is the input variable
o mP is the set of variables of current module
o aP is the set of all variables in all other modules less the current module. For any

module j , U
M

jii
ij PaP

≠=

=
,1

o M is the set of all modules in the SDDES model
o s indicates the source module from which v is obtained.
o sop is an output port in the source module through which v is obtained
o mU is the set of variables in the current module that use the input value. It is

defined by Equation 3.

(){ }mmm PuInPortsipftuipU ∈∈= ,|,,, (3)
In Equation 3:

o ip is an input port in current module
o mInPorts is the set of input ports of current module
o u is the variable in current module that uses the input variable.
o t represents the timing of reading the input variable to be used by u .
o f indicates the data preparation action that the controller has to perform before

sending the input data to the requesting module. There are two types of actions:
Aggregate and Disaggregate that are specified by the user when defining the
modules.

• Y is the set of outputs. It is described by Equation 4.

{ }{ }mMDPvOutPortsopMmDvopmY mm −⊂∈∈∈= ,,,|),,,((4)

In Equation 4:

o op is an output port in the current module
o mOutPorts is the set of all output ports in the current module
o v is the output variable leaving at the current output port
o D is the set of modules that receive the current output variable from current

module m . Several modules can receive an output variable and several variables
in each can use the received value. D is given as in Equation (5)

{ }{ }mddddd PVmMmVmD ⊂−∈= ,|),((5)

In Equation 5:

o dm is a module that is receiving an output of module m
o dV is the set of variables in dm that use the received value
o mdP is the set of all variables in the receiving module

Each element in dV consists of the identification number of the input port through which

the received value is received, the name of the using variable, the timing of reading the received
value, and the necessary formatting. The whole SDDES model is described as the set of all
modules interacting through the controller. The SDDES model is described by Equation 6.

{ }MmmSDDES ∈= | (6)

3.4 The SDDES Synchronization Mechanism

We propose the SDDES synchronization method to synchronize separate SD and DES
simulation models. The proposed method makes use of the concepts of the TB synchronization
approach. The conservative simulation approaches depend on using a lookahead interval to
determine the safe time advancement step. The optimistic approaches use messages of the
timestamps of the events to control the advancement of time and perform rollbacks when needed.
They both assume discrete simulations, or a system that is dominated by discrete behavior.
Continuous simulation does not generate events and does not have states that can be defined

practically, if can be defined at all. Synchronization of the continuous simulations with each
other or with discrete models can be approached using TB-based approaches. TB approaches are
consistent with advancing time in steps in SD and by following events in DES. The optimistic
and conservative approaches depend on the use of events that does not make them fit the
synchronization function in SDDES.

TB in this work is related to the DES modules and will be used to define the length of the
run for each DES module. The choice of the bucket size will remain an important decision that
should be made considering the desirable levels of accuracy and efficiency as well as the nature
of the system unit being modeled in DES. An iterative approach to deciding on the TB size is
described in Figure 9. A short and large bucket sizes compare to each other as in Table 1.

Figure 9: Process of deciding on the TB size

Table 1: Characteristics of large and small bucket sizes

Large Bucket Size Small Bucket Size
Lower accuracy Higher accuracy
Low fidelity Higher fidelity
Fast simulation run Slow simulation run
Optimistic synchronization in nature Conservative synchronization
Less flexibility in fitting other systems and
estimating costs and performance measures
(lateness, lead times, rates, etc)

More flexibility in fitting other systems and
estimating costs and performance measures
(lateness, lead times, rates, etc)

In SDDES we avoid having one simulation paradigm dominating the other. If discrete
models are to be dominant then control situations (e.g. discrete/digital control of a continuous
process) will be the case. Control situations can not be applicable to all business or social
phenomena that are fundamentally continuous and do not normally change abruptly. And in
addition the continuous units; mainly at the top levels of decision making, are usually generating
the guidelines for the discrete units at the operational or detailed levels.

SDDES is basically a time-driven simulation. This is because the SD unit represents the
total enterprise system while the DES units are parts in that system. This is close to real practices
where plans set at higher management levels are executed at the lower management levels. The
TB is the time advancement step for the SDDES model. It is of fixed size for the SDDES model
as a whole but each DES module can have its own TB size. TB is not the same as the time step in
the SD technique. The integration calculations in SD are preformed with the appropriate time
step while TB is the step for advancing time for the simulation as whole. This allows the
accuracy of SD to be set without restrictions from the DES units.

The simulation run length of the SDDES model is defined in the SD part as the planning
horizon for the enterprise. Each DES module’s run is broken into several run segments. Each
segment is a complete discrete simulation run with sufficient number of replications. Each
segment is initialized with the status of the DES module at the end of the previous segment in
addition to any adjustment received from SD modules at the end of the previous run (TB). Run
segments for the same module have the same length but each DES module has a different run
segment length (TB). TB of the whole SDDES model is the minimum run segment length among
all DES modules. This will be called the base TB for the whole SDDES run and termed L . The
run segment length for any DES is nL ,where n is nonzero positive integer. Check points among
SD and DES models is at the end of each TB for each DES module. It is also allowable for the
modules to send a receive data values during the runs to keep going. These values are planned to
be sent or received before the run starts and are needed to maintain logical simulation results. L ;
the base TB is determined based on operational, managerial, and computational considerations to
achieve the best balance between accuracy and efficiency.

Figure 10 describes the SDDES synchronization mechanism, assuming three DES
modules interacting with a SD model (which has several modules in it). All interactions in the
SDDES model are made through the SDDES controller, which is also indicated in the Figure.
The TB sizes for the DES modules are L , L2 , and L5 respectively. The numbers on the arrows
in Figure 10 indicate the sequence of actions. The SD part sends the initialization data for all the
DES modules at the beginning of the run such that the system starts at steady state. DES modules
advance time toward the TB of each. At the end of a TB the modules that have finished a run
would send and receive data to each other and to SD; all via the SDDES controller. All
formatting is done at the controller side.

All data exchange transactions are defined at the controller with the appropriate user
interfaces it provides and with the specification of the SDDES formalism. The controller
monitors and records the simulation time for the DES modules as they don’t run to the end of the
SDDES simulation run, but in separate segments. Functions of the controller are explained in the
next section.

SD

DES_1

DES_2

DES_3

0 L 2L 3L 4L 5L 6L

5

SD started
DESs
initialized

DES_1 1st

run end

12

8

11

16

20

27

23

26

30

34

39

35

44

43

48

DES_1 2nd

run end

DES_2 1st

run end

DES_1 3rd

run end
DES_1 4th

run end

DES_2 2nd

run end

DES_1 5th

run end

DES_3 1st

run end

DES_1 6th

run end

2 3 18
19

24

DES_2 3rd

run end

52

1

4

7 9
10

15 17 22
25

29 31
6 13

14 21
27

28
32

33 36

38 40
41

37
42

45
46

47 49
50

51

Simulation
Time

Controller

Figure 10: Interactions among SD and the DES models

Interactions among SD and DES as well as among the DES modules are also allowable
during the run segments. For instance to release orders and raw materials in DES periodically,
SD must send the relevant data at the specified times to DES. This should be done for each
replication by saving the SD values to be used in each replication on the right time indicated by
SDDES controller. The interaction ports are defined in the controller and this includes the timing
of data exchanges.

3.5 The SDDES Controller

SDDES uses the existing SD and DES modeling techniques as they are normally used.
The integration of the modules and what it entails are all managed by the SDDES controller. The
SDDES controller is the manager of synchronization of the SD and DES simulation modules in
the SDDES framework. The controller is a separate unit that interacts with the simulation
modules to integrate them and facilitate the interactions between them according to the
specifications included in the SDDES formalism. In fact the formalism information is stored in
the controller model database. The controller also implements the synchronization mechanism to
control the running and stopping of the modules. It is also the user interface to perform I/O
operations and to define/modify/replace the modules. Specifically, the SDDES controller acts in
the following areas:

1. Data management: The controller ensures that the information indicated in the
definition of the SD and DES modules (in their formalism specifications) are executed
properly, in relation to the formatting of the data.

2. Time management: The controller implements the synchronization mechanism to
control the running of the modules. It monitors the simulation time. The DES modules do
not run for the entire SDDES simulation horizon in a single run, and the simulation times
from them are not usable directly. The controller estimates the time for each with respect
to the overall SD model such that the user can observe the correct time.

3. Participation management: The controller offers the functionality needed to add new
modules to the SDDES model as well as to modify or replace already functioning
modules. This is achieved through a user interface through which the modeler inputs the
necessary data by the SDDES formalism to specify a module.

All functions the controller does are based on the user interactions with its user interfaces. An
IDEF0 of the SDDES controller functions and details about how they are performed are
presented in the following section.

3.5.1 Functional model of the SDDES controller

The IDEF0 method offers a hierarchal representation of a system that depicts the
functions done within the system along with relevant inputs needed to perform the functions,
outputs generated upon perfuming the functions, the controls that guide and constrain the
functions, and the mechanisms needed in that. The basic model is shown in Figure 11 presented
from the point of view of the modeler/the user of the SDDES. The A-0 IDEF0 model is the most
abstract representation. A single box is used to indicate the function of the controller, namely
Execute SDDES. The SDDES controller fundamentally executes the simulation run that the
SDDES model is built to make. The sets of inputs, controls, outputs, and mechanisms (the
ICOMs) used in the A-0 model are described in Table 2.

Figure 11: A-0 IDEF0 functional model of the SDDES controller

Table 2: ICOMs for the A-0 IDEF0 model of the SDDES controller

Inputs I1 Operational
settings

Characteristic information representing the current status
of the system. They are elements of the management
policies that will be tested and evaluated with the
simulation model. The module variables are assigned
values in this action. These values are provided by the
modeler or obtained from the active information system in
the company (M2).

 I2 Modules
settings

The inputting of the data required by the SDDES
formalism. Modules can be modified, deleted, or added to
the model.

 I3 Run settings Specifying the planning horizon, number of replications for
the DES modules, as well as the time units and needed
parameters that will be monitored. Also the outputs that are
of interest are specified here

Controls C1 SDDES
formalism

This guides the addition, modification, or deletion of
modules. Also specifies the data needed to set the model
and the run.

 C2 SDDES
synchronizati
on

This is SDDES synchronization algorithm. It guides the
simulation run and the data exchange transactions.

Output O1 Performance
indicators

This is the regular outputs of a simulation model

Mechanisms M1 Modeler Represents the user of the simulation model in general. The
modeler performs all I/O operations

 M2 Info system This is the existing information system of the company
(e.g. ERP or MRP). Module variables are linked to data
provided by the information system. Outputs can also be
added to the information system.

 M3 GUI the graphical user interface is an integrated unit of the
controller. It offers several user interfaces through which
the modeler interacts with the controller and the model.

 M4 Modules These are the module information saved in their files (e.g.
the Arena and Vensim files in the current work). They are
called to be used as necessary by the modeler and during
the run for sure.

The controller executes the SDDES simulation model using these sets of inputs, controls,

outputs, and mechanisms. The modeler uses the appropriate user interface to input module data
or the simulation data. The modeler also observes the outputs during the simulation run and can
pause the model to modify some settings or stop the simulation for a new experiment. The inputs
provided by the modeler are specified by the two controls; the formalism and the synchronization
algorithm. The controller contains a database to store the input data and the ongoing outputs
during the run. To set the modules, the controller extracts the parameters of the modules (via
calling M4) such that the modeler would assign values to them or link their values to the
appropriate data in the information system. The decision on the TB for the DES modules can
also use inputs from the information system.

The A-0 diagram is decomposed into more detailed definition of the controller functions.
The A0 diagram of the IDEF0 model is the first level of details of the function described in the
A-0 model. A0 for the SDDES controller models the three basic functions of the controller as
described in the previous section; described however in more practical terms. In the IDEF0 terms
these functions are the A1, A2, and A3 in Figure 12. Each of these functions is decomposed
further as necessary to offer a complete description of the controller role in the SDDES model,
prior to its implementation. The A0 model is describe in Figure 12 and explained afterward.

Figure 12 : The A0 IDEF0 model of the SDDES controller

The Interact With User function (A1) allows the user (the Modeler in the above model) to

perform I/O operations as well as defining the modules. The appropriate GUI is initiated for the
Modeler to input the necessary settings. These inputs are communicated to A2 and A3 for the
models to be defined and the run to be ready to be executed. The GUI is developed to meet all
use cases of the system and these use cases are controlled by the SDDES formalism (adding or
deleting modules), by the current contents of the saved modules (coming from A3 to modify
modules, assign input values to their variables, etc.), and by the performance indicators (coming
from A2 for the user to observe outputs and do necessary adjustments when desirable).

The Manage Model function works to accept changes in the existing modules and add
new ones to the SDDES model as inputted by the modeler in A1. The modules are saved in their
simulation software files and the files are called as necessary (M4). The current contents of the
modules are the outputs of A3 that are fed back to A2 so that the controller reads the TB setting
for the modules and the defined data exchange transactions that will be executed during the run
in the A2 function. The synchronization algorithm (C2) controls A2 along with the relevant
information from the formalism (C1). The current module contents from A3 are also fed back
into A1 for the Modeler to correctly assign the operational and run settings.

The output of A2 is the output of the simulation run, which is offered as the overall
output of SDDES and is fed back to A1 for the modeler to analyze the performance with the
appropriate GUI. It is noted that the A2 function is internal; no direct user interactions are
needed with it. During the run, the behavior of the system is feedback to A1 for the user to
perform any adjustment if desirable.

The output of A1 is the simulation run info representing the settings needed to start the
simulation run at A2. These ongoing outputs are saved in the run database. They are updated all

the time during the run. Of particular importance, the results of the run segments of the DES
modules are saved to be used in the following segments.

4.0 Summary and Future Work

We propose a new hybrid simulation methodology that combines the SD and DES
simulation paradigm to simulate the manufacturing enterprise system. We described the modular
structure of the methodology, the formalism to describe and communicate the modules, the
synchronization mechanism, and the controller unit that manages the interactions. The proposed
SDDES methodology has the potentials to bridge the simulation gap identified in simulating the
integrated manufacturing enterprise system. The proposed methodology can cover all types of
behavior in the enterprise system and can accommodate the differences between the management
levels in terms of scope and frequency in decision making and the levels of details in data at each
level.

The SDDES maintains the integrity of the two simulation paradigms and does not allow
one to dominate the other as do the existing hybrid simulation frameworks. SDDES can extend
the applicability of SD in the manufacturing system applications as well as enhance the usability
of DES in simulating large scale complex systems. Modelers need not learn new simulation
skills and existing/legacy SD and DES simulation models can be used in SDDES.

Currently we are working to implement the design described in this paper. Data has been
collected from a real manufacturing company, and a comprehensive SD as well as two DES
models have been built. The objectives of the experimentation are to validate the usefulness and
effectiveness of the proposed synchronization mechanism in particular and the SDDES
simulation approach in general.

References

Aguilar-Saven R. 2004. Business process modeling: Review and framework. International
Journal of Production Economics 90(2): 129-149.

Alexopoulos C, Kim S. 2002. Output data analysis for simulations. The Winter Simulations
Conference, WSC’02, Dec 5-8, Orlando, FL

An L, Jehn J. 2005. On developing system dynamics model for business process simulation. The
Winter Simulations Conference, WSC’02, Dec 5-8, Orlando, FL

Anthony R, Dearden J, Bedford N. 1989. Management Control Systems. 6th Ed. IRWIN. IL
Ashayeri J, Keij R, Broker A. 1998. Global business process re-engineering: a system dynamics-

based approach. International Journal of Operations and Production Management 18(9/10):
817-831

Baines T, Harrison D. 1999. An opportunity for system dynamics in manufacturing system
modeling. Production Planning and Control 10(6): 542-552

Barton J, Love D, Taylor G. 2001. Evaluating design implementation strategies using simulation.
International Journal of Production Economics 72: 285-299

Bauer C, Whitehouse G, Brooks G. 1982. Computer simulation of production system: Phase I.
Technical Report COE No. 82-83-1. The University of Central Florida, Orlando, FL

Bodoh D, Wieland F. 2003. Performance experiments with the high level architecture and the
total airport and airspace model (TAAM). The 17th Workshop on Parallel and Distributed
Simulation, IEEE, June 10-13, San Diego, CA

Boer C, Bruin A, Verbraeck A. 2006a. Distributed Simulation in industry: A survey Part 1 – the
COTS vendors. The Winter Simulation Conference; WSC’06, Dec 3-6, Monterey CA

Boer C, Bruin A, Verbraeck A. 2006b. Distributed Simulation in industry: A survey Part 2 –
Experts on distributed simulation. The Winter Simulation Conference; WSC’06, Dec 3-6,
Monterey CA

Bonder D, McGinnis L. 2002. A structured approach to simulation modeling of manufacturing
systems. Proceedings of the 2002 IERC, May 19-21, Orlando FL

Borshchev A, Karpov Y, Kharitonov V. 2002. Distributed simulation of hybrid systems with
AnyLogic and HLA. Future Generation Computer Systems 18(6): May 2002

Bouchhima F, Nicolescu G, Aboulhamid E, Abid M. 2005. Discrete-continuous simulation
model for accurate validation in component-based heterogeneous SoC design. RSP’05: IEEE
International Workshop on Rapid System Prototyping: pp 181-187

Carrie A. 1988. Simulation of manufacturing systems. John Wiley & Sons, GB.
Chandy K, Misra J. 1978. Distributed simulation: A case study in the design and verification, of

distributed programs. IEEE Transactions on Software Engineering 5(5): 440-452
Chang Y, Makatsoris H. 2001. Supply chain modeling using simulation. International Journal of

Simulation 2(1): 24-30
Choi K, Bae D, Kim T. 2006. An approach to a hybrid software process simulation using the

DEVS formalism. Software Process: Improvement and Practice 11(4): 373-383
De-Souza R, Huynh R, Chandrashekar M, Thevenard D. 1996. A comparison of modeling

paradigms for manufacturing line. IEEE Int. conf on systems, management, and cybernetics,
Oct 14-17, Beijing, China

Fujii S, Ogita A, Kidani Y, Kaihara T. 1999. Synchronization mechanisms for integration of
distributed manufacturing systems. Simulation 72(3): 187-197

Fujimoto R. 2000. Parallel and distributed simulation systems. John Wiley & Sons, Inc. USA
Fujimoto R. 2001. Parallel and distributed simulation systems. The 2001 Winter Simulation

Conference; WSC'01
Godding G, Sarjoughian H, Kempf K. 2003. Semiconductor supply network simulation. The

Winter Simulation Conference, Dec 7-10, New Orleans, LA
Gregoriades A, Karakostas B. 2004. Unifying business objects and systems dynamics as a

paradigm for developing decision support systems. Decision Support Systems 37: 307-311
Haler D. 1987. Statecharts: A visual formalism for complex systems. Science of Computer

Programming 8: 231-274
Hannet J. 1999. From the aggregate plan to lot-sizing in multi-level production planning.

Brandimarte, P, Villa, A. (Eds.): Modeling Manufacturing Systems from aggregate planning
to real time control. Springer-Verlag Berlin, Germany

Helal M, Rabelo L. 2004. An enterprise simulation approach to the development of dynamic
balanced scorecards. ASEM’04; Proceeding of American Society of Engineering
Management Conference, Oct 20-23, Alexandria, Virginia

Huang G, Lau J, Mak K. 2003. The impact of sharing production information on supply chain
dynamics: a review of the literature. International Journal of Production Research 41(7):
1483-1517

Jefferson D. 1985. Virtual time. The ACM Transactions on Programming Languages and
Systems 7(3): 404-425.

Johnson S, Eberlein B. 2002. Alternative modeling approaches: a case study in the gas and oil
industry. The 2002 SD Society Conference, July 27-30, Shanghai, China

Keenan P, Paich M. 2004. Modeling general motors and north American automobile market.
22nd International Conference of the System Dynamics Society, July 25-29, Oxford, England

Kosturiak J, Gregor M. 1999. Simulation in production system life cycle. Computers in
Industry 38: 159-172

Law A, Kelton W. 2000. Simulation modeling and analysis. McGraw Hill, USA
Lee Y, Cho M, Kim S, Kim Y. 2002. Supply chain simulation with discrete-continuous

combined modeling. Computer and Industrial Engineering 43: 375-392
Lendermann P. 2006. About the need for distributed simulation technology for the resolution of

real-world manufacturing and logistics problems. The Winter Simulation Conference
WSC’06, Dec 3-6, Monterey CA

Lin C, Baines T, O’Kane J, Link D. 1998. A generic methodology that aids the application of
system dynamics to manufacturing system modeling. International Conference on
Simulation, Sep 30 – Oct 2 (IEEE Conf. Pub. No. 457)

Ma Q, Judd R, Lipset R. 2001. Distributed manufacturing simulation environment. Proceedings
of the Summer Computer Simulation Conference, July 15-17, Orlando, FL

Maler O, Manna Z, Pnueli A. 1992. From timed to hybrid systems. In Bakker, J, Huizing, C,
Roever, W, Rozenberg, G. (Eds.) Real-Time: Theory in Practice. Springer-Verlag, Germany

Mandal P, Sohal A. 1998. Modeling helps in understanding policy alternatives: A case. Journal
of Management in Engineering Jan-Feb: 41-48

Martin R. 2001. A hybrid model of the software development process. PhD Thesis, Portland State
University

Pegden C, Shannon R, Sadowski R. 1990. Introduction to simulation using SIMAN. McGraw-
Hill, USA

Rabelo L, Helal M, Jones A, Min H. 2005. Enterprise simulation: A hybrid system approach.
International Journal of Computer Integrated Manufacturing 18(6): 498-508

Smith J. 2003. Survey on the use of simulation for manufacturing system design and operation.
Journal of Manufacturing Systems 22(2): 157-171

Steinman J. 1991. SPEEDES: Synchronous parallel environment for emulation and discrete
event simulation. Proceedings of the SCS Western Multi-conference on Advances in Parallel
and Distributed Simulation 23(1): 95-103.

Steinman J. 1992. SPEEDES: A multiple-synchronization environment for parallel discrete-
event simulation. International Journal in Computer Simulation 2: 251-286

Sterman J. 1989. Modeling managerial behavior: misperception of feedback in a dynamic
decision making experiment. Management Science 35(3): 321-339

Sterman J. 2000. Business dynamics: systems thinking and modeling for a complex world.
McGraw Hill, New York, USA

Sterman J, Repenning N, Kofman F. 1997. Unanticipated side effects of successful quality
programs: Exploring a paradox of organizational improvement. Management Science 43:
503-521

Towill D, Edghill J. 1989. The use of system dynamics in manufacturing systems engineering.
Transactions of the Institute of Measurement and Control 11: 208-216

Wiendahl H, Breithaupt J. 1998. Automatic production control: a new approach in production
planning and control based on methods of control theory. Drexl, A, Kimms, A. (Eds.) Beyond
manufacturing resource planning (MRP II). Springer, Berlin, Germany

Wu B. 1992. Manufacturing system design and analysis. CHAPMAN & HALL, GB
Wu B. 2002. Handbook of manufacturing and supply system design. Taylor and Francis, London.
Zeigler B. 1976. Theory of modeling and simulation. Wiley, NY
Zeigler B, Praehofer P, Kim T. 2000. Theory of modeling and simulation: Integrating discrete

event and continuous complex dynamic systems. 2nd Ed., Academic Press, USA
Zulch G, Jonsson U, Fischer J. 2002. Hierarchical simulation of complex production systems by

coupling of models. International Journal of Production Economics 77: 39-51

