

Customer Acquisition Dynamics

"Getting Started with STELLA and iThink" Workshop International System Dynamics Conference August 2, 2007

> Presented by: Karim Chichakly Paul Gisborne Joanne Egner

Customers(t) = Customers(t - dt) + (Customer_Recruitment) * dt INIT Customers = 100

INFLOWS:

Customer_Recruitment = Marketing_Spend*Productivity Marketing_Spend = Revenue*Marketing_Spend_Fraction Marketing_Spend_Fraction = 0.08 Productivity = 0.05 Revenue = Customers*Revenue_per_Customer Revenue per Customer = 50

Customer Model 2 (Reinforcing Loop with Balancing Loop)

Customers(t) = Customers(t - dt) + (Customer__Recruitment) * dt INIT Customers = 100

INFLOWS:

Customer__Recruitment = Marketing_Spend*Productivity

Potential__Customers(t) = Potential__Customers(t - dt) + (- Customer__Recruitment) * dt INIT Potential__Customers = 900

OUTFLOWS:

Customer__Recruitment = Marketing_Spend*Productivity Marketing_Spend = Revenue*Marketing_Spend_Fraction Marketing_Spend_Fraction = 0.08 Productivity = 0.05 Revenue = Customers*Revenue_per_Customer Revenue_per_Customer = 50

Customer Model 3 (Introducing a Market Saturation Effect)

Customers(t) = Customers(t - dt) + (Customer__Recruitment) * dt INIT Customers = 100

INFLOWS:

Customer__Recruitment = Marketing_Spend*Productivity

Potential__Customers(t) = Potential__Customers(t - dt) + (- Customer__Recruitment) * dt INIT Potential__Customers = 900

OUTFLOWS:

Customer__Recruitment = Marketing_Spend*Productivity Effect_on__Productivity = Potential__Customers/INIT(Potential__Customers) Marketing_Spend = Revenue*Marketing_Spend_Fraction Marketing_Spend_Fraction = 0.08 Productivity = 0.05*Effect_on__Productivity Revenue = Customers*Revenue_per_Customer Revenue_per_Customer = 50

Customer Model 4 (Introducing another loop - Customer Loss)

Customers(t) = Customers(t - dt) + (Customer Recruitment - Customer Loss) * dt **INIT Customers = 100 INFLOWS:** Customer Recruitment = Marketing Spend*Productivity OUTFLOWS: Customer_Loss = Customers*Ave_Customer_Loss Lost_Customers(t) = Lost_Customers(t - dt) + (Customer_Loss) * dt INIT Lost Customers = 0 INFLOWS: Customer Loss = Customers*Ave Customer Loss Potential Customers(t) = Potential Customers(t - dt) + (- Customer Recruitment) * dt INIT Potential Customers = 900 OUTFLOWS: Customer___Recruitment = Marketing_Spend*Productivity Ave Customer Loss = 0.05 Effect on Productivity = Potential Customers/INIT(Potential Customers) Marketing_Spend = Revenue*Marketing_Spend_Fraction Marketing_Spend_Fraction = 0.08 Productivity = 0.05*Effect on Productivity Revenue = Customers*Revenue per Customer Revenue per Customer = 50

