
SMILE and XMILE: A Common Language and Interchange
Format for System Dynamics

Karim Chichakly
isee systems, inc.

31 Old Etna Road, Suite 9N
Lebanon, NH 03766

(603) 448-4990/FAX: (603) 448-4992
kchichakly@iseesys.com

Abstract

Proposed four years ago, SMILE has made minimal progress toward a full-fledged
specification that System Dynamics software vendors can use to interchange models.
This paper attempts to move the development of the standard one step further with a draft
specification of both the language that needs to be interchanged (SMILE) and an XML
format for that language (XMILE). Central to the success of this standard is the idea of
three increasing levels of compliance, only the lowest level (interchange of equations)
being required of all vendors.

Keywords: Model Interchange, SMILE, XMILE, XML, System Dynamics Language

Background

In the Spring 2003 System Dynamics Society newsletter, Jim Hines proposed that there
be a common interchange format for system dynamics models. Magne Myrtveit
originally proposed such an idea at the 1995 ISDC, but Jim hoped to revive interest in the
idea and chose the name SMILE (Simulation Model Interchange LanguagE) to keep
people lighthearted. The benefits Jim proposed at the time were:

• Sharing of models can lead to greater increases of knowledge and sharing of
ideas.

• On-line repositories could be built to facilitate learning.
• Open standards lead to better acceptance in larger corporations as it minimizes

their risk with specific vendors.
• It spurs innovation by allowing non-vendors to develop add-ons.

To this formidable list, I would add:

• It allows the creation of a historical record of important works that everyone has
access to.

• It allows vendors to expand their market base because suddenly their unique
features (and let’s be honest – each of the three major players has unique
competencies) are available to all system dynamics modelers.

SMILE and XMILE 2 K. Chichakly © 2007

Vedat Diker and Robert Allen later presented a poster at the 2005 ISDC that proposed a
working group be formed and that XML be the working language for the standard.

At the first meeting of the Information Science SIG at the 2006 ISDC1, I suggested
breaking the problem into two pieces: the language we intend to interchange and the
interchange format. The first section of this document, on SMILE (Systems ModelIng
LanguagE), proposes to begin the process of documenting the base set of functionality
that we want from a system dynamics modeling language. The second section on
XMILE addresses the XML-based interchange format. As standards, these are two
separate documents.

SMILE Specification

1.0 Basic Functionality

It is safe to say that the minimal useful language subset would include most of the
capabilities of DYNAMO. After all, it was the first system dynamics modeling language
and many of the DYNAMO models that have been written represent some of the seminal
work in the field. Given this premise, we can begin with the basic building blocks
available in DYNAMO: stocks (“levels” in DYNAMO), flows (“rates” in DYNAMO),
auxiliaries, and table functions.

1.1 Stocks

Stocks represent things that accumulate in the system. Their value must be set at the start
of the simulation with an initial value. The initial value can be either a constant or an
expression. In the case of an expression, the value is evaluated only once, at the
beginning of the simulation, to initialize the stock.

During the course of the simulation, the value of a stock can only be changed by its
inflows and outflows. In general, a stock is evaluated by adding the sum of its inflows
minus the sum of its outflows, all times DT, and adding that to the value of the stock
during the previous DT. 2

A sample DYNAMO stock specification appears below.

L POP.K = POP.J + DT*(BIRTHS.JK – DEATHS.JK)
N POP = 100

The L line defines the stock equation in terms of its current value (.K), its previous value
(.J), and the previous flow values (.JK). The N line defines the stocks initial value.

1 As an aside, Len Malczynski presented a paper at the 2006 conference that explained why the software
vendors may never adopt such a standard. This paper is the start of an effort to prove him wrong.
2 DT stands for “delta time.” Since these are time-based simulations, DT is the increment of time being
used to advance through the model. It needs to be small enough to achieve accurate calculation results.

SMILE and XMILE 3 K. Chichakly © 2007

Stocks in SMILE are unconstrained other than by their inflows or outflows. Vendor-
specific features such as Non-negativity, which prevents a stock from taking on negative
values, are not (directly) supported. Likewise, stocks can only by modified by their
inflows and outflows. Therefore, the equation can always be inferred from the list of
flows and is never explicitly written (as it is in DYNAMO). The form of all stock
equations (using DYNAMO syntax) is:

L S.K = S.J + DT*(<sum of inflows> – <sum of outflo ws>)

No other stock formulation is supported in SMILE.

1.2 Flows

Flows represent rates of change of the stocks. They can be defined using any algebraic
equation (including a constant value) or by using a table function.

During the course of a simulation, a flow’s value is evaluated each DT based on the
current state of the system. A sample DYNAMO flow specification appears below.

R BIRTHS.KL = BR*POP.K

This equation defines the current value of births in terms of the birth rate (BR) and the
current population.

Flows in SMILE are unconstrained other than by their equation. Vendor-specific features
such as Uniflows, which prevent a flow from taking on negative values, are not
supported.

1.3 Auxiliaries

Auxiliaries allow the isolation of any algebraic function that is used. They can both
clarify a model and factor out important or repeated calculations. They are defined using
any algebraic expression (including a constant value3) or a table function.

During the course of a simulation, an auxiliary’s value is evaluated each DT based on the
current state of the system. A sample DYNAMO auxiliary specification appears below.

A BR.K = 0.1*FAM.K

This equation defines the birth rate in terms of the base birth rate (0.1) and a food
availability multiplier.

3 DYNAMO explicitly separated the definition of a constant from that of an algebraic expression. The
distinction was necessary as auxiliaries required the .K suffix, while constants did not.

SMILE and XMILE 4 K. Chichakly © 2007

1.4 Graphical Functions

Graphical functions are alternately called lookup functions and table functions. They
represent a functional mapping between two variables. The domain is consistently
referred to as x and the range is consistently referred to as y.

Since every modern program displays table functions as graphs, and most allow the users
to edit the functions by drawing the graph, the terminology used here is “graphical
functions.”

Although some vendors support arbitrary sets of (x, y)-pairs, DYNAMO only supported a
fixed increment for x. This is what this standard supports.

A sample DYNAMO table function appears below.

A FAM.K = TABLE(FAMT, FOOD.K, 0, 1, .1)
T FAMT = 0/.3/.55/.7/.83/.9/.95/.98/.99/.995/1

The table lookup function defines the y-values (FAMT), the input (or x) variable
(FOOD.K), the bounds on x (0 to 1) and the x-increment (0.1). Note that the supported
functionality requires a fixed x-increment. XMILE has a representation for arbitrary (x,
y)-pairs, but they are not part of the language. The graph of this function appears below.

0
 0 1

The above is a continuous graphical function. Intermediate values are calculated with
linear interpolation between the intermediate points. SMILE also supports discrete
graphical functions, which use the value associated with the next lower x-coordinate for
intermediate values (also called a step-wise function). The last two points of a discrete
graphical function must have the same y-coordinate.

1.5 Groups

Groups (aka sectors) were not supported by DYNAMO. However, they are an important
feature for building large models. Groups are useful for collecting related model entities
in one place. Some programs allow these separate pieces to be simulated separately.

SMILE and XMILE 5 K. Chichakly © 2007

Every group has a unique name and documentation. It may have other information
related to its display, but that is not part of SMILE.

2.0 General Conventions

All statements and constants follow US English conventions. So built-in functions are in
English, operators are based on the Roman character set, and constants have US English
delimiters (that is, a period is used for a decimal point).

Variable names, comments, and embedded text may be localized.

2.1 Constants

As mentioned, constants follow US English conventions. All constants are floating point
numbers in decimal. They can begin with either a digit or a decimal point. There can be
any number of digits before or after the decimal point, but must contain at least one digit.
A decimal point is not required. The number can be optional followed by an “E” (or “e”)
and a signed integer constant. The “E” is used as shorthand for scientific notation and
represents “times ten to the power of”.

Although the number of digits is not explicitly restricted, only so many digits of precision
are retained by each vendor’s program. However, numbers in all programs should have
at least the precision of IEEE single-precision floating point numbers. The same applies
for the exponent.

Constants, like variables, can be modified by operators, including unary plus and unary
minus. Thus, it is possible to enter negative constants also.

In BNF,

constant ::= { [digit]+[.[digit]*] | [digit]* .[digit]+ }[{ E | e} [{ + | –}] [digit]*
digit ::= { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }

Note the leading sign { + | – } is not explicitly included as expressions handle this.

Sample constants: 0 –1 .375 14. 6e5 8.123e-10

2.2 Identifiers

Identifiers are used throughout a model to identify various things. The most obvious
names are given to variables. However, names are also given to units, subscripts, groups
(or sectors), and models (described below). Most of these identifiers will appear in
equations (the group name is perhaps the only exception), and as such need to follow
certain rules to allow for well-formed expressions.

SMILE and XMILE 6 K. Chichakly © 2007

Due to differences in different vendors’ products, it is a challenge to a set of rules that
works for everyone. The approach taken here is to define a basic set of rules and then
allow escape conventions to handle other cases.

As a basic premise, it is fair to say that identifiers should not be defined such that they
could make expressions ambiguous. By this rule, several characters that are used as
operator expressions and delimiters can be immediately ruled out. These include:

. , < > ^ * / + – = () [] { }

Since we propose to use braces { } for in-line comments, these also need to be ruled out.

We also need to rule out starting characters that may cause confusion. For example, we
cannot start an identifier with a digit as that is how constants begin. Some languages
restrict what an identifier can start with, rather than ruling things out. Java, for example,
states that an identifier can only begin with a letter, an underscore, or a dollar sign. This
is, unfortunately, over-restrictive for our use, as we want user to be able to localize their
names. In this case, we may want to focus on any additional unary operators that have
not yet been covered, specifically !, #, and &.

Finally, white space is used by parsers to break up tokens. Thus, spaces cannot appear in
identifiers. The standard approach is to replace spaces with underscores internally, but
then change them back to spaces for display outside of equations.

There is an unresolved issue around the use of return (‘\r’, not ‘\n’) in variable names.
Some products allow it and others do not. It is perhaps safest to allow it with the
understanding that the standard mapping will map it to an underscore.

For products that allow these characters in identifiers, there needs to be a way of
delimiting the additional characters. In VenSim, for example, spaces and other characters
are allowed as long as the entire identifier is in quotes (thus identifiers in VenSim cannot
have quotes in them). This approach is also taken in scripting shells. In most
programming languages, there is an escape character that causes the next character to be
taken out literally (rather than interpreted). In all of the C-derived languages, this
character is backslash. It is proposed here that both methods be supported as ways of
delimiting illegal characters. Double-quotes will be used to delimit entire “identifiers”
while the backslash \ will be used to delimit single characters. This necessarily means
that double-quotes in variable names always need to be delimited \” (whether in quote or
not) and that backslash needs to be delimited \\ when not in quotes.

For products that cannot support other characters in identifiers, there must also be
mappings to characters they allow. For example, return would generally be mapped to
underscore. The exact definition of these mappings is left for XMILE (but they will
likely be defined using an XSLT provided by the specific vendor).

Note that identifiers are not case-sensitive and that all built-in function names, operator
names, and statement keywords are reserved.

SMILE and XMILE 7 K. Chichakly © 2007

Sample identifiers: Cash_Balance draining wom_multiplier

3.0 Expressions

Equations are defined using expressions. The simplest expression is just a constant.

Expressions are infix (e.g., algebraic), following the general rules of algebraic precedence
(parenthesis, exponents, multiplication and division, and addition and subtraction).
Unfortunately, our set of operators is much richer than basic algebra, so we have to
account for functions, unary operators, and relational operators. In general, the rules or
precedence and associativity (the order of computation when operators have the same
precedence) follow the established rules of the C-derived languages.

3.1 Operators

The following table lists the supported operators in precedence order. All but the unary
operators have left-to-right associativity (right-to-left is the only thing that makes sense
for unary operators).

[] Subscripts
() Parentheses
^ Exponentiation
+ – NOT Unary operators positive, negative, and logical not
* / % Multiplication, division, modulo [should this be included?]
+ – Addition, subtraction
< <= > >= Relational operators
= != Equality operators (in mathematics, != is relational)
AND Logical and
OR Logical or

Note the logical, relational, and equality operators are all defined to return zero (0) if the
result is false and one (1) if the result is true.

Sample expressions: a*b (x < 5) AND (y >= 3) (–3)^x

3.2 Structured Statements

One control structure statement is supported:

 if condition then expression else expression

where condition is an expression that evaluates to true or false (we follow the convention
of C that all non-zero values are true, while zero is false). Generally, this is an expression
involving the logical, relational, and equality operators.

Note that many vendors implement this in the DYNAMO (and original FORTRAN)
fashion, i.e., as a built-in function:

SMILE and XMILE 8 K. Chichakly © 2007

if_then_else(condition, then-expression, else-expression)

This makes the language a little easier to parse and is a supported alternative (while the
former is generally considered easier to comprehend). Note DYNAMO implemented this
functionality with the CLIP function.

3.3 In-line Comments

Comments are provided to include explanatory text that is ignored by the computer.
Comment are delimited by braces { } and can be included anywhere within an
expression. This functionality allows the modeler to temporarily turn off parts of an
equation or to comment the separate parts of a complex formulation.

Sample comments: a*b { take product of a and b } + c { and add c }

3.4 Documentation

Each variable has its own documentation, which is a block of text unrelated to the
equation. Each vendor has their own way to enter documentation, some within
expressions. XMILE define how documentation is stored.

3.5 Units

Each variable has its own set of units. Each vendor has their own way to enter units,
some within expressions. XMILE defines how units are stored.

Each model has a defined unit of time. The predefined units are:

ns nanoseconds
us microseconds
ms milliseconds
s seconds
min minutes
hr hours
day days
wk weeks
mo months
qtr quarters
yr years
time unspecified time units

In general, units should be abbreviated to their accepted forms, e.g., “mi” for miles, “lb”
for pounds, “km” for kilometers, “kg” for kilograms, etc. Unit specifications are
expressions in their own right. They are, however, restricted to the operations ^, *, and /.

SMILE and XMILE 9 K. Chichakly © 2007

4.0 Built-in Functions

Certain built-in functions must be relied upon across all systems. This section strives to
define the minimum set of built-in functions that must be supported, along with their
parameters. The mechanism for defining vendor-specific built-ins is also described.

4.1 Mathematical Functions

ABS: absolute value (magnitude) of a number
Parameters: 1: the number to take the absolute value of
Range: [0, ∝)
Example: abs(Balance)

ARCTAN: arctangent of a number
Parameters: 1: the number to take the arctangent of
Range: (-π/2, π/2)
Example: arctan(x)

COS: cosine of an angle in radians
Parameters: 1: the number to take the cosine of
Range: [-1, 1]
Example: cos(angle)

EXP: value of e raised to the given power
Parameters: 1: the power on e
Range: (-∝,∝)
Example: exp(x)

INT: next integer less than or equal to the given number
Parameters: 1: the number to find next lowest integer of
Range: (-∝,∝); note negative fractional numbers increase in magnitude
Example: int(x)

LN: natural (base-e) logarithm of the given number
Parameters: 1: the number to find the natural logarithm of
Range: [0,∝); note domain is (0,∝)
Example: ln(x)

LOG10: base-10 logarithm of the given number
Parameters: 1: the number to find the base-10 logarithm of
Range: [0,∝); note domain is (0,∝)
Example: log10(x)

MAX: larger of two numbers
Parameters: 2: the numbers to compare
Example: max(x, y)

SMILE and XMILE 10 K. Chichakly © 2007

MIN: smaller of two numbers
Parameters: 2: the numbers to compare
Example: min(x, y)

MOD: remainder of dividing two numbers
 Mathematical definition: a = INT(a/b)*b + MOD(a, b)
Parameters: 2: (dividend, divisor); divisor ≠ 0
Range: [0, divisor) if divisor > 0
 (-divisor, 0] if divisor < 0
Example: mod(month, 12)

PI: value of π, the ratio of a circle’s circumference to its diameter
Parameters: none
Example: pi

SIN: sine of an angle in radians
Parameters: 1: the number to take the sine of
Range: [-1, 1]
Example: sin(angle)

SQRT: square root of a positive number
Parameters: 1: the number to take the square root of
Range: [0, ∝); note domain is the same
Example: sqrt(x)

TAN: tangent of an angle in radians
Parameters: 1: the number to take the tangent of

undefined for odd multiples of π/2
Range: (-∝,∝)
Example: tan(angle)

4.2 Statistical Functions

EXPRND: Sample a value from an Exponential distribution
Parameters: 1 or 2: (mean[, seed]) 0 ≤ seed < 32,768
 If seed is provided, the sequence of numbers will always be identical
Example: exprnd(8) samples from an exponential distribution with mean 8

NORMAL: Sample a value from a Normal distribution
Parameters: 2 or 3: (mean, standard deviation[, seed]) 0 ≤ seed < 32,768
 If seed is provided, the sequence of numbers will always be identical
Example: normal(100, 5) samples from N(100, 5)

RANDOM: Sample a value from a uniform distribution
Parameters: 2 or 3: (minimum, maximum[, seed]) 0 ≤ seed < 32,768
 If seed is provided, the sequence of numbers will always be identical
Example: random(1, 100) picks a random number between 1 and 100

SMILE and XMILE 11 K. Chichakly © 2007

4.3 Delay Functions

DELAY: infinite-order material delay of the input for the requested fixed time
Parameters: 2 or 3: (input, delay time[, initial value])
 If initial value is not provided, the initial value of input will be used
Example: delay(orders, 5)

DELAY1: first-order material delay of the input for the requested fixed time
Parameters: 2 or 3: (input, delay time[, initial value])
 If initial value is not provided, the initial value of input will be used
Example: delay1(orders, 5)

DELAY3: third-order material delay of the input for the requested fixed time
Parameters: 2 or 3: (input, delay time[, initial value])
 If initial value is not provided, the initial value of input will be used
Example: delay3(orders, 5)

DELAYN: Nth-order material delay of the input for the requested fixed time
Parameters: 3 or 4: (input, delay time, n[, initial value])
 If initial value is not provided, the initial value of input will be used
Example: delayn(orders, 5, 10) delays orders using a 10th order material delay

SMTH1: 1st-order exponential smooth of the input for the requested time
Parameters: 2 or 3: (input, averaging time[, initial value])
 If initial value is not provided, the initial value of input will be used
Example: smth1(Quality, 5)

SMTH3: 3rd-order exponential smooth of the input for the requested time
Parameters: 2 or 3: (input, averaging time[, initial value])
 If initial value is not provided, the initial value of input will be used
Example: smth3(Quality, 5)

SMTHN: Nth-order exponential smooth of the input for the requested time
Parameters: 3 or 4: (input, averaging time, n[, initial value])
 If initial value is not provided, the initial value of input will be used
Example: smthn(Quality, 5, 10) performs a 10th order smooth

4.4 Test Input Functions

PULSE: Generate a one-DT wide pulse at the given time
Parameters: 2 or 3: (magnitude, first time[, interval])
 Without interval, the PULSE is generated only once
Example: pulse(20, 12, 5) generates a pulse of 20 at time 12, 17, 22, etc.

RAMP: Generate a linearly increasing value over time with the given slope
Parameters: 2: (slope, start time); begin in-/de-creasing at start time
Example: ramp(2, 5) generates a ramp of slope 2 beginning at time 5

SMILE and XMILE 12 K. Chichakly © 2007

STEP: Generate a step increase (or decrease) at the given time
Parameters: 2: (height, start time); step up/down at start time
Example: step(6, 3) steps from 0 to 6 at time 3 (and stays there)

4.5 Time Functions

DT: value of DT, the integration step
Parameters: none
Example: dt

STARTTIME: starting time of the simulation
Parameters: none
Example: starttime

STOPTIME: ending time of the simulation
Parameters: none
Example: stoptime

TIME: current time of the simulation
Parameters: none
Example: time

4.6 Miscellaneous Functions

IF_THEN_ELSE: Select one of two values based on a condition
Parameters: 3: (condition, true value, false value)
 If condition is non-zero, it is true; otherwise, it is false
Example: if_then_else(x < 3, -4, 11) will be -4 is x < 3 and 11 otherwise

INIT: initial value (value at STARTTIME) of a variable
Parameters: 1: the number to get the initial value of
Example: init(Balance)

4.7 Defining Unsupported Built-ins

There must be a way for vendors to specify the operation of both their own functions and
the functions of other vendor that their users wish to use. In the latter case, these can
clearly map to either their own functions or to the SMILE functions (preferred when no
translation is given for a vendor’s function). Ideally, vendor-specific function names
would be prefixed by a vendor identifier to avoid conflicting names between both
different vendors and SMILE.

As a simple example, let us say that vendor A does not have a LOG10 built-in, but has a
general (any base) LOG built-in. That vendor should then be able to map any LOG10(x)
function to LOG(x, 10) when the file is read-in. Conversely, if the vendor wishes to use
their general LOG function within SMILE, they should be able to provide a translation
that maps LOG(x, y) to LN(x)/LN(y) (change of base formula – LOG10 works just as
well).

SMILE and XMILE 13 K. Chichakly © 2007

The first kind of translation, from SMILE functions to the vendor’s functions, could be
handled either by the vendor as the file is read in, or through an XSLT translator. The
macro functionality described below would also handle this (they would create a macro
for a SMILE function).

The second kind of translation, mapping unsupported functions in the file to SMILE, is
the main focus of this section. Every unsupported built-in that a vendor wants to appear
within a SMILE file needs to be defined in a SMILE macro. The macros may appear in
the same file as the model or in a separate file. It is, however, more likely that each
vendor will provide their own file of macros to use with their models.

Macros can also be used to implement complicated options such as stock non-negativity
and uniflows. It would, of course, be necessary to add an additional function call to the
[out]flow equation to achieve this.

Macros can use all of the syntax of SMILE to achieve their result (it goes without saying
that SMILE implementations must support macros). The simplest kind of macro is
simply an expression using existing (including through macros) functions and operators.
The change of base formula above is a good example.

More complicated macros can define stocks, flows, and auxiliaries to do their work. This
would be the approach, for example, to implement a smooth function if one did not
already exist.

The name of the macro is the same as the name of the function. In addition, variable
numbers of arguments are not supported, but the same macro can be defined multiple
times with a different number of arguments. Indeed, a macro can have the same name as
a SMILE function, providing it uses a different number of arguments. Finally, the names
of any variables (including parameter identifiers) defined within a macro are local to that
macro alone and will not conflict with any names within either the model or other
macros.

There are also various unsupported options (vendors can also add their own) for building
blocks. One way to handle these would be to define built-in macros that are used to
envelope an object’s equation. Non-negative flows (aka uniflows), for example, could
have their equations wrapped in a built-in macro that implements MAX(<flow value>, 0).

Ideally, macros would support these options without having to change the equations. For
the simple cases, such as non-negative flows, the format can mimic the built-in macros.
However, more complicated options require greater support. For example, non-negative
stocks implement the non-negative logic in the stock’s outflows, not in the stock itself.
Furthermore, each outflow needs not only its own value, but the stock’s value, and the
sum of the values of every higher-priority flow (which, yes, the stock could find for it).

SMILE therefore supports options with macro filters. The filters run after the object’s
value has been computed. If several filters are needed, they would run in the order they
appear in the options list. A basic filter would only affect the given object, and so is
passed just the object itself. More complicated filters affect inflows or outflows of the

SMILE and XMILE 14 K. Chichakly © 2007

object and need to be invoked for those inflows or outflows and not for the object. They
then need to be passed the affected flow, the given stock, and the sum of the inflows or
outflows already evaluated (or perhaps both).

The exact format of macros is left to the XMILE document.

5.0 Simulation Specifications

Every SMILE model must specify the start time of the simulation, the stop time of the
simulation, DT, and the units of time.

By default, the integration method is Euler’s, but other methods are supported as follows:

SMILE Name Integration Method
Euler Euler’s method
RK2 Runge-Kutta 2
RK4 Runge-Kutta 4
RK_Var Runge-Kutta Variable Step Size (optional)
Gear Gear algorithm (optional)

Additional integration methods can be supported optionally. In these cases, a supported
fallback method should be also provided, for example, “Gear, RK4”. This means that
Gear should be used if the product supports it. Otherwise, use RK4.

The language also supports an optional pause interval. By default, a model runs to
completion (from STARTTIME to STOPTIME). If, however, the pause interval is
specified, the model will pause at all times that match STARTTIME + interval*N; N > 0.
Products are free to ignore this specification if they do not support this mode of
operation.

6.0 Optional Functionality

It is expected that compliant products will implement the language thus far described in
its entirety. There are, however, a number of features that are left to each vendor’s
discretion as to whether or not to support. These are not intended to be vendor-specific
features, but common features that lighter packages may either not support, or support in
part. These features include conveyors, queues, arrays, and hierarchical models.

6.1 Conveyors

A conveyor conceptually works like the real thing. Objects get on at one end and some
time later (the length of the conveyor), they fall off. Some things can leak out (fall off!)
of a conveyor partway, so there is also a leakage flow. In addition, the conveyor has a
variable speed control, so you can change the length of time something stays on it.

SMILE and XMILE 15 K. Chichakly © 2007

Note this behavior means a conveyor can have at most two outflows. If there is only one
outflow, it must be the stuff coming off the end of the conveyor. If there are two
outflows, the first is always the conveyor’s output, while the second is the conveyor’s
leakage.

6.2 Queues

Queues are first-in, first-out objects that track individual batches that enter them
(otherwise, they’d just be stocks). The first batch in is the first batch to leave. Queues
are important when it is necessary to track batches or when there are input constraints
downstream that force the queue outflow to zero (for example a capacity issue on a
conveyor).

6.3 Arrays

Arrays add depth to a model in up to N dimensions. Products that support arrays offer
different values of N.

Arrays are defined with dimension names. Each named dimension also has a name for
each of its indices. For example, a two dimensional array of location vs. product could
have a dimension called “location” with three indices “Boston”, “Chicago”, “LA”, and
another dimension called “product” with four indices “dresses”, “blouses”, “skirts”, and
“pants”. If we are looking at sales, we might have a variable sales[location, product]
which has elements sales[Boston, dresses], sales[Boston, blouses], etc. Note that both
dimension names and subscript names are identifiers. Subscripts also appear within
square brackets with each index separated by a comma. Arrays are stored in row-major
order, which may only be an issue when looking at data sets.

Some programs do not allow the subscript indices (which are text) to be numbers (just as
other identifiers cannot be numbers), while others do allow them to be numbers, but still
treat them as textual labels. This will need to be addressed.

6.4 Hierarchy

“Hierarchical models” is really a misnomer. The features explained here could be used to
set up a hierarchical system, but by no means need to be used in that way. What this
section supports is the idea of independent model pieces (for lack of a better word)
interacting with each other in some way (i.e., sharing model inputs and outputs). These
pieces may or may not have separate simulation specifications, though this does not make
a lot of sense unless the pieces are arranged hierarchically. The semantics of any
differences will eventually be described here.

The most relevant issue for SMILE is how these disparate model pieces communicate
with each other. It is necessary for each of these pieces to be uniquely named. It is then
possible for any object to reference any other object across the entire model, by using the
name of the model piece followed by a period and the name of the entity. Note this, in
effect, introduces separate namespaces for each of the model pieces. For example, if I am

SMILE and XMILE 16 K. Chichakly © 2007

in a model called “finance” and I need the variable “expenditures” from the model
“marketing”, I could reference it as “marketing.expenditures”.

XMILE Specification

1.0 XMILE Standard Levels

The interchange format is built in three layers (called compliance levels). Each level
builds upon the prior level in a way that allows programs that only support the lowest
level to still read files generated at the highest level. The compliance levels are:

1: Simulation
2: Display
3: Interface

As engineers, perhaps we should give them more cryptic names, such as “Level 307.43b”
or “Subset g”, but I think “Level 1 compliance” is sufficiently obscure already.

The first layer, Simulation, is the minimal level needed for compliance. We intend for
everyone to support this layer. This represents only the underlying equations of a model
in SMILE. If we wished to have an unstructured text format, this could be accomplished
by using a variant of DYNAMO or MDL. It represents the basic information necessary
to simulate the model (we could also name it the Equations layer).

The second layer, Display, adds the information necessary to both display and edit the
stock-flow diagram of the model. We hope everyone will also implement this layer.

The third layer, Interface, adds layout information necessary for management flight
simulators, i.e., user interfaces on top of models. This layer also includes all output
devices, such as graphs and tables, so it is likely everyone will support part of this.

2.0 Overall Architecture

A XMILE file begins with a header that identifies the vendor, program, and version
number that created the file. It also includes information about advanced features used in
the model, such as arrays (with the number of dimensions) or conveyors, so programs
that do not support the higher-order SMILE functionality can find out right off and tell
the user.

SMILE and XMILE 17 K. Chichakly © 2007

The file is conceptually broken into three sections (though, in practice, these pieces are
interwoven):

• Model
• Presentation
• Widgets

Any data from simulation runs is kept separate from this information about the structure
of the model. It is still on the table whether a separate data layer should be included to
support the display of graphs and tables when the model is opened (it is likely that we
will need to support some data interchange).

Although sections include room for vendor-specific extensions, it is recommended to
tread lightly in this area.

2.1 Model

The model section corresponds exactly to the Simulation level. It conforms to SMILE
and contains all the information necessary to simulate the model.

2.2 Presentation

The presentation section is necessary to support the Display level, but it is not restricted
to that level. Presentation involves all aspects of drawing an object, including its
position, its color, its font, its relative size, etc.

Presentation information is hierarchical in the same way cascading style sheet and XML
style sheets are. Global styles can be defined (such as “all stocks are blue”) and can then
be overridden at any level. The presentation information is stored in XSL format.

Note that this is used by both the Display and Interface levels.

2.3 Widgets

Widgets are the objects used in the model to support the use of the model, such as graphs,
tables, sliders, knobs, etc. As such, widgets live entirely in the Interface level.

This section of the file defines the specific widgets being used with their necessary
parameters, but not their presentation. For example, an entry may describe a slider as
controlling a specific model variable with a given range and increment.

SMILE and XMILE 18 K. Chichakly © 2007

3.0 XMILE Headers

The entire XMILE file is enclosed within a <xmile> tag as follows:

<xmile xmlns="http://www.systemdynamics.org/XMILE">
 ...
</xmile>

This is followed by the header. The header contains important information about the
origin of the model. Some of this information is required, but other pieces are optional.
The XML tag for the header is <header> . The required pieces are:

• XMILE version: <xmile_version> w/version number
• XMILE compliance level: <xmile_level> w/level number
• SMILE version: <smile_version> w/version number
• SMILE optional features used in model: <smile_options> (defined below)
• Vendor name: <vendor> w/company name
• Product name: <product> w/product name
• Product version: <version> w/version number
• Language code (for variable names and comments – using ISO 639-1; must use

639-2 if language missing from 639-1 – e.g., Hawaiian): <lang> w/code

Optional pieces include:

• Model name: <name> w/name
• Model caption: <caption> w/caption
• Picture of the model in JPG, GIF, TIF, or PNG format: <view> w/filename

 or <view type=”jpg”> w/picture data
• Author name: <author> w/author name
• Company name: <affiliation> w/company name
• Client name: <client> w/client name
• Copyright notice: <copyright> w/copyright information
• Contact information (e-mail, phone, mailing address, web site – user-defined):

 <contact> w/contact information [perhaps separate out e-mail]
• Date created: <created> w/”mm/dd/yyyy hh:mm xm”, where “x” is “a” or “p”

 (leading zeroes suppressed)
• Date modified: <modified> w/date as above

SMILE and XMILE 19 K. Chichakly © 2007

3.1 SMILE Options

SMILE options is a list of optional functionality used in the model file. The available
options are:

<uses_conveyor/>
<uses_queue/>
<uses_arrays> N</uses_arrays> , where N is the number of dimensions used
<uses_hierarchy/>

3.2 Style Information

Every XMILE file can include some style information to set default options. Being style
information, this mostly belongs to the Presentation section (which affects both the
Display and Interface layers). However, it is also possible to set default styles for Model
and Widget sections, for example, all stocks are non-negative.

The style information for the entire model immediately follows the header. Note that the
style information can be repeated in each Model section to override specific global
defaults (note it is also legitimate for it to only appear in Model sections that need it).

It is presently thought that the style information will match the CSS format and keywords
(augmented). However, it is not envisioned that these will be changed externally and
they are within an XML file. Therefore, it is more likely they will appear in XML using
the same tags that are used in the objects themselves. This section will assume the latter
in its discussion.

The style block begins with the <style> tag. Within this block, any known object can
have its attributes set globally (but overridden locally) using its own modifier tags.
Global settings that apply to everything that has a particular tag can be set at the model
level. For example, the following sets the font globally to 12 pt and Tahoma (or failing
Tahoma, a sans serif font), the background to white, and the color of objects to blue:

<model>
 12 pt Tahoma, sans-serif
 <background>white</background>
 <color>blue</color>
</model>

These changes can also be applied directly to objects, e.g.,

<connector>
 <color>magenta</color>
</connector>

As already stated, these settings can also be from the Model section:

<stock>
 <options>

SMILE and XMILE 20 K. Chichakly © 2007

 <non_negative/>
 </options>
</stock>
<flow>
 <options>
 <non_negative/>
 </options>
</flow>

In this particular case, where the same option is being applied to all objects that accept it
(stocks and flows are the only objects that can be non-negative), it would be better to
apply that option to the model.

3.3 Simulation Specifications

Every XMILE file with a Model section must contain at least one set of simulation
specifications, as required in the SMILE language. The simulation specifications for the
entire model appear immediately after the style information (if present, otherwise after
the header). This set must always be present. Note that the simulation specifications can
be repeated in each Model section to override specific global defaults. Great care must
be taken in these situations, as outlined in the SMILE document.

The simulation specifications block begins with the tag <simspecs> . The following
properties are required:

• Step size: <dt> w/value
• Unit of time: <time_units> w/SMILE code
• Start time: <start> w/time
• Stop time: <stop> w/time (after start time)

Optional properties:

• Integration method: <method> w/SMILE code (default: Euler’s)
• Pause interval: <pause> w/interval (default: infinity – can be ignored)

All of the optional properties define default settings that are to be used if the property is
not included.

4.0 Level 1: Simulation

The simulation layer supports all of the features of the SMILE language, in the required
formats. The simulation specifications block has already been described and, along with
the header and style blocks, is part of this level. The meat of this layer is within the
model block. Note that there can be many model blocks.

Each model block uses the XML tag <model> . The model block must begin with a
<name> field. In most models, this will be empty (i.e., <name/>). However, if

SMILE and XMILE 21 K. Chichakly © 2007

uses_hierarchy is set, the name is required (in this case, the model contents can be in
a separate file referenced through a URL path).

As mentioned above, the model block can include either or both of the style and
simulation specs blocks, overriding only those settings that are desired. These blocks
should appear just after the name block.

Finally, the model building blocks (stocks, flows, and auxiliaries) defined by SMILE are
listed in any order (except those within groups must appear within that group’s block).

4.1 Building Block Properties

All building blocks can have the following properties.

• Name: <name> w/valid identifier
• Equation: <eqn> w/valid expression in a CDATA section (unless constant)
• Units: <units> w/valid units
• Documentation: <doc> w/block of text
• Options block: <options> w/block specific options

Of these, the name and the equation are required in all building blocks. In addition, the
name must be unique across the model block. For a stock, the equation is for the stock’s
initial value, rather than for the stock itself.

Flows and auxiliaries can also be defined as graphical functions. This is done using a
<gf> block, as shown below.

<gf>
 <xscale>0,0.5</xscale> <!-- min and max -->
 <yscale>0,1</yscale> <!-- min and max -->
 <pts>0.05,0.1,0.2,0.25,0.3,0.33</pts>
</gf>

As can be seen, the bounds of the x and y scales are given, followed by a set of y-values
(tagged <pts>). The (fixed) increment along the x-axis is determined by dividing the
length of the x-scale by the number of points.

Alternatively, though not guaranteed to be understood if the x-increment is not constant,
the entire graphical function can be defined as a sorted (by x) series of (x, y)-pairs. A
representation equivalent to the above graphical function is shown below.

<gf>
 <yscale>0,1</yscale> <!-- min and max -->
 <pts>0,0.05;0.1,0.1;0.2,0.2;0.3,0.25;0.4,0.3;0.5,0 .33</pts>
</gf>

SMILE and XMILE 22 K. Chichakly © 2007

Note the x-scale is now inferred from the bounds of the given points. In either
formulation, the y-scale only needs to be included if the desired scale differs from the
minimum and maximum y-values in the set of points.

Graphical functions have one option:

<discrete/>

When this is set, no interpolation is done between points. Instead, the data values
represent a step-wise function where the steps occur at each x-coordinate. Necessarily,
the last point must equal the second to last point (this should be enforced if it is not the
case).

4.2 Stocks

The minimum requirement for a stock is name, an initial value, and a set of flows. Rather
than write a stock equation, SMILE mandates that we classify the flows that affect the
stock as either inflows or outflows (the classification is based on the direction of flow
when the flow rates are positive –negative inflows do flow outward while negative
outflows do flow inward). The basic stock definition is shown below with sample values.

<stock>
 <name>Motivation</name>
 <eqn>100</eqn>
 <inflows>increasing</inflows>
 <outflows>decreasing</outflows>
</stock>

Note again that the equation is for the stock’s initial value only. If the equation is not
constant, the initial values of the included variables will be used to calculate the stock’s
initial value.

There need not be a list of inflows or outflows. If there are multiple inflows, they are
listed separated by commas (e.g., <inflows>in1,in2</inflows>). If the order of
input is important (inflow priority), it is taken to be the order they appear in this comma-
separated list. Multiple outflows also appear separated by commas. The order that they
appear in this list is their outflow priority, if that is important. I.e., material from the
stock is first given to the first flow on this list. If there is still something in the stock, the
second flow gets some of it. This example assumes that the stock in question cannot
become negative (for example, Inventory).

The options for a stock are:

<conveyor>5</conveyor> <!-- number is length of con veyor -->
<queue/>
<non_negative/>

Note that non-negative is not supported by SMILE. The flag exists partly for
documentation, partly to allow a vendor to invoke a macro to implement the

SMILE and XMILE 23 K. Chichakly © 2007

functionality. If this property has been set at the global level, it can be turned off locally
with <non_negative>false</non_negative> .

The conveyor option includes the conveyor’s length (transit time). This can be an
equation if the conveyor’s length varies. If conveyor is included, there can be no more
than two outflows. The first outflow in the outflows list is by definition the conveyor
outflow, while the second is the leakage outflow. Other conveyor options are:

<capacity>20</capacity> <!-- maximum allowed on con veyor -->
<in_limit>5</in_limit> <!-- most that can be taken from q -->
<batch_integrity/> <!-- maintain q batches -->

The last option is only available when there is a queue directly upstream from the
conveyor (equivalent to “one at a time and don’t split batches”, without it we have “as
much as possible and split batches” – think about whether split batches ever wants to be
off). The in_limit is only needed when either there is a queue directly upstream from
the conveyor, or there are several inflows to the conveyor (in which case the limit is
applied in priority order). The latter case may not be supported as it can easily be
reformulated in the same was as non-negativity.

Queues do not have any options. However, their outflows have a priority order and can
have the <overflow/> option set (on all but the first).

See the SMILE document for further details.

4.3 Flows

A flow requires a name and an equation. In the case of conveyor and queue outflows,
there is no equation (the conveyor and queue drive them). The conveyor leakage flow,
however, does have an equation for its leakage fraction. The basic flow definition is
shown below with sample values.

<flow>
 <name>increasing</name>
 <eqn> <![CDATA[rewards*reward_multiplier]]></eqn>
</flow>

The options for a flow are:

<non_negative/>
<overflow/>

The first is used to document a uniflow, while the second is only used for queue outflows
(see stocks above). While it is tempting to also label queue outflows, conveyor outflows,
and leakage outflows with special tags, these are by their nature already defined by the
stocks that use them. There is no need to repeat this information here.

SMILE and XMILE 24 K. Chichakly © 2007

4.4 Auxiliaries

Auxiliaries, like flows, also require a name and an equation. The basic auxiliary
definition is shown below with sample values.

<aux>
 <name>reward_multiplier</name>
 <eqn>0.15</eqn>
</aux>

This particular auxiliary is a constant (i.e., it depends on no other variables and its value
does not change).

4.5 Groups

Groups require a name and may have documentation. The <group> tag surrounds the
entities in that group. The block must begin with the name and any documentation, as
shown below.

<group>
 <name>Financial_Sector</name>
 <doc>
 The operation of the Finance department is modele d in
 this sector.
 </doc>
 <stock>
 ...
 </stock>
 <flow>
 ...
 </flow>
 ...
</group>

All of the objects within a group belong to that group.

4.6 Built-in Function Translation Macros

SMILE provides for translation of unrecognized built-ins into SMILE (or anything else,
for that matter). There is also mechanism to define macros to implement non-standard
building-block macros.

Macros live outside of all other blocks (and may be the only thing in a file other than its
header). The set of macros is tagged with the <macros> tag. Within this block is a
series of macros, identified by their own <macro> tag (note that macros for options,
when they exist, will likely use a different tag). Each macro begins with its name and
parameters. It must also have an equation that defines its value, as shown below.

<macro>
 <name>LOG(X, Y)</name>

SMILE and XMILE 25 K. Chichakly © 2007

 <eqn> <![CDATA[LN(X)/LN(Y)]]></eqn>
</macro>

This form is useful when functions can be directly represented by existing built-ins.
However, sometimes extra variables (stocks, flows, auxiliaries) are needed. In these
cases, the extra variables must also be defined (in the same way they are defined in the
model). This is shown below.

<macro>
 <name>SMOOTH1(input, averaging_time)</name>
 <eqn>Smooth_of_Input</eqn>
 <stock>
 <name>Smooth_of_Input</name>
 <eqn>input</eqn>
 <inflows>change_in_smooth</inflows>
 </stock>
 <flow>
 <name>change_in_smooth</name>
 <eqn> <![CDATA[(input – Smooth_of_Input)/averaging_time]]></eqn>
 </flow>
</macro>

This is identical to the SMTH1 function without the optional third parameter (which
would replace the initial value equation of Smooth_of_Input if it were given), so this is a
trivial example (i.e., the equation could just be SMTH1(input, averaging_time) to do the
same thing). However, it clearly demonstrates the generality and applicability of this
mechanism.

Note that any stocks that are defined within a macro must have their own instances for
each use of that macro which persist across the simulation. That is to say, if this
SMOOTH1 function is used five times in a model, there must also be five copies of the
stock Smooth_of_Input, one for each use. Use of flows and auxiliaries do not require this
(auxiliaries, in particular, are useful to simplify the equation into meaningful pieces).

Here is a simple (i.e., self-contained) option filter. This implements non-negativity for
flows (i.e., makes them uniflows).

<option_filter>
 <flow>
 <name>non_negative(flow, value)</name>
 <eqn> <![CDATA[IF value THEN MAX(flow, 0) ELSE flow]]></eqn>
 </flow>
</option_filter>

The name of the macro is the same as the option name and it is passed the value of the
object calculated without the option, as well as the value of the option (true: 1, false: 0).
The result replaces the object’s value.

Because options are shared by different objects, we need a way to distinguish between
the different object types. This is done by using the correct tag for the object inside the

SMILE and XMILE 26 K. Chichakly © 2007

macro (“<flow>” is used above to show this is a flow option macro). Optional
parameters can then be added to the type in order implement more sophisticated macros
(shown below).

Here’s an attempt at implementing the non-negative option for stocks.

<option_filter>
 <stock applyto=”outflows”>
 <name>non_negative(flow, value, stock, outflow_su m)</name>
 <eqn> <![CDATA[
 IF value
 THEN MAX(stock/DT – outflow_sum, flow)
 ELSE flow
]]></eqn>
 </stock>
</option_filter>

This concept is a little more complicated. Here we are clearly talking about the non-
negative option of the stock. But we are now using the applyto modifier to tell us this
option changes the stock’s outflows, not the stock itself.

This also changes the parameters a bit. Because we are modifying a flow, the first
parameter is that flow value, not the stock. However, we also include the stock. Finally,
because we are looking at the stock’s outflows, we also pass in the sum of all the
outflows already calculated this time step (i.e., all those with higher priority than the
passed flow). The same sort of thing would happen if we operated on the inflows instead
(except the sum of inflows already calculated would be passed instead). It is possible that
in these cases, we should pass both the sum of the known inflows and the sum of the
known outflows.

Further examples are needed to test this theory. In any event, this requires more complex
support from the macro interpreter of the host program.

The existence of the above macro does not rule out another macro that operates on the
stock instead of its outflows. Such a macro would not have the applyto option. This is
necessary for options that affect both the object and those that are upstream or
downstream from them.

5.0 Level 2: Display

The display layer supports presentation and editing of SMILE objects. Since this layer
affects all objects, the display properties are interspersed throughout the model.

Each display block uses the XML tag <display> . Within the block any display aspects
can be specified (or overridden). There are defined defaults for all of these settings. In
addition, the global or model style sheets can change the defaults. Note that the display

SMILE and XMILE 27 K. Chichakly © 2007

tag is not explicitly required in a style sheet, as everything except model options refer to
presentation.

There is usually one <display> block nested one level inside the <model> that
describes objects required to properly render the model.

5.1 Display Properties

The following display properties are defined for all presentation objects (including Level
3). Note that not all of them are available for all objects.

• Position: <pos> with “x,y ” [required]
• Name position: <name_pos> w/top , bottom , left , right , center with

 optional offset [default: bottom , except for stocks which default to top]
• Background color: <background> w/valid CSS color only [default: white]

 specific objects can also specify images
• Color: <color> w/valid CSS color [default: black]
• Font: with CSS conventions, restricted to style, weight, size, family;

 weight can be normal or bold only [default: 9 pt sans-serif]
• Text alignment: <text-align> with CSS conventions [default: left]
• Text decoration: <text-decoration> with none or underline only [default: none]
• Border: <border> with CSS conventions [default: thin solid]
• Padding for border: <padding> with CSS conventions, length only [default: 2 px]
• Drawing Order: <z-index> with CSS conventions [defaults to order in file]

All objects require a position, so there is no default. Unless otherwise specified, the
position is the center point of the object.

Drawing order may not be supported in all programs as some programs define very
specific drawing orders. These programs are not fully level 2-compliant, but can work
towards compliance over time.

5.2 Display Properties for SMILE Objects

Some of the SMILE objects require special display properties. At present, only the flow
and the group have their own properties.

5.2.1 Flow Display Properties

The position of a flow is not the center of the complex path taken by the flow, but rather
the center of the intersection of the flow valve and the pipe.

SMILE and XMILE 28 K. Chichakly © 2007

A flow is typically drawn through a series of perpendicular bends. Each endpoint and
bend can be described by one point. These points are necessary to draw the flow
correctly, so the flow requires one additional display property, <cpts> , that gives the
flow’s points in order from the start of the flow to its end.

<cpts>290,107;335,107</cpts>

This is a simple horizontal flow that only has its two endpoints. If clouds are explicitly
specified, it is not strictly required that simple flows include their endpoints as they can
be inferred from the flow’s center and connections. It is, however, recommended if you
desire a faithful reproduction of the flow.

Some programs use curved flows instead. These programs also have control points that
could be presumably be manipulated to approximate the perpendicular bend behavior
supported by this standard.

5.2.2 Group Display Properties

Groups can be used to collect related model objects together. As such, they can have
both borders and background images. They also have two additional control properties:

<show_name/> <!-- default: true -->
<show_image/> <!-- default: false (no image) or tr ue -->

The first makes the name is visible, presumably on or near the border. The second makes
the image (if any) visible, obscuring the contents of the group. Note that even without an
image, the contents should be hidden (i.e., show_image = hide contents).

The position of a group is its top-left corner, not its center. Resizable objects (including
text annotations, graphics frames, and buttons) all require their size to be defined with an
(h, v)-pair.4

<size>500,400</size>

5.3 Display Objects

Several objects outside SMILE are available at the display level. In particular, objects to
support the graphical representation of the model are needed. These include clouds,
connectors, and aliases (or ghosts).

5.3.1 Unique IDs

Display objects do not generally have names or any other way to refer to them. For this
reason, every display object includes a unique identifying number. These numbers
should be unique within each object type, but are not unique across all objects. They are
defined using the <uid> tag followed by the identifying number. Every display object
must have a unique ID.

4 h represents the horizontal width, while v represents the vertical height, of the object

SMILE and XMILE 29 K. Chichakly © 2007

5.3.2 Clouds

Clouds represent the sources and sinks of the system, i.e., the model boundary. Each
cloud is associated with a flow and is classified as either a source (at flow’s starting
point) or a sink (at flow’s ending point).

Some might argue that a cloud is not really its own object, but the representation of an
unattached flow end. However, clouds can have their own positions (relative to the flow,
of course) and their own color. One can even imagine documentation for a cloud, though
this is not presently available in any program.

The basic cloud definition is shown below with sample values.

<cloud>
 <uid>2</uid>
 <pos>116,50</pos>
 <sink>out</sink>
</cloud>

If the cloud is a source (rather than a sink), the <source> tag is used. The position is
absolute on the model space, not relative to the flow. This means clouds could drift quite
far away from their flows; it is recommended that the position get reset if it doesn’t make
sense when the model is read. Note that display characteristics (e.g., color) can be
changed directly within this block.

Finally, not all programs support clouds as their own objects. If no cloud appears in the
model for a given flow, it is reasonable (indeed, required) to create one.

5.3.3 Connectors

Algebraic calculations are represented in a stock-flow diagram with connectors between
the model elements. Each connector always goes between two entities, which are
identified by name or type and unique ID. The basic connector definition is shown below
with sample values.

<connector>
 <uid>3</uid>
 <from>Inspect</from>
 <to>out</to>
 <pos>283,85</pos>
</connector>

The from and to properties identify the objects the connector goes between (and its
direction). If either object is a display object, e.g., an alias, the type of object and its
unique ID would appear instead of its name. This would look like this:

<from><alias>3</alias></from> <!-- Inspect -->

An XML comment with the entity name is not required, but helps anyone reading the file.

SMILE and XMILE 30 K. Chichakly © 2007

The position of the connector is the center of its starting point, i.e., where it attaches to
the from object. Some programs allow both ends to be controlled. In these cases, a
<to_pos> tag should be included. Other programs may have multiple points defined
along the way. In this case, use a <pts> tag, following the same rules as the flow (see
above). Be aware, though, that the only information required by this standard is the
single starting position.

5.3.4 Aliases

An alias (aka ghost) is a second image of an object used to avoid crossed connectors or to
communicate across groups or models. The alias typically appears in the same form (or a
close approximation) as the original, has the same name, but appears differently in some
way. Aliases may also have different display attributes, such as name position and color.

All aliases require a reference back to the original (sometimes called the parent). The
basic alias definition is shown below with sample values.

<alias>
 <uid>3</uid>
 <of>Inspect</of>
 <pos>385,153</pos>
</alias>

As shown, the <of> tag is used to identify which object this is the alias of. Note that if
the given object were in another model, the name would have to be fully qualified with
the model name, e.g., QA.Inspect .

6.0 Level 3: Interface

The interface layer supports widgets on the surface of the stock-flow diagram or on a
separate page. It includes both the definition of those widgets and their presentation.
Because widgets do not require simulation, they also appear within the display block.

The objects defined by this layer include all of the input devices (sliders, knobs, switches,
numeric inputs, graphical inputs), output devices (graphs, tables, numeric displays, status
indicators, loops), annotation devices (text blocks, graphics frame), and control devices
(buttons). [This leaves the process frame and bundled flows/connectors out of it – maybe
the loop should be left out as well.]

There is still some question about where graphs and, perhaps, tables belong. No question
they are display objects of some sort and are tied to the interface. But DYNAMO did
include plot commands with scaling. And the model is not very useful without at least
graphs. On the one hand, it seems inconsistent to put them on the Simulation layer (and
into SMILE). On the other hand, everyone shouldn’t have to become level-3 compliant
just for graphs. A reasonable compromise would be to put them on the display level.

SMILE and XMILE 31 K. Chichakly © 2007

References

Diker VG, Allen RB. 2005. XMILE: Towards an XML Interchange Language for System
Dynamics Models. System Dynamics Review 21(4), 351-359.

Hines J. 2003. A SMILE for System Dynamics. System Dynamics Newsletter 16(1): 1, 5-
6.

iThink/STELLA 9 Technical Documentation. 2006. isee systems: Lebanon, NH.
Vensim Version 5 User’s Guide. 2006. Ventana Systems: Harvard, MA.
W3C. CSS 2.1 Specification. http://www.w3.org/TR/CSS21 [6 November 2006]
W3C. XML 1.1, second ed. http://www.w3.org/TR/2006/REC-xml11-20060816 [29

September 2006]

