Modeling Agile Development: When isit Effective?
Karim Chichakly
isee systems, inc.
31 Old Etna Road, Suite 9N
Lebanon, NH 03766
(603) 448-4990/FAX: (603) 448-4992
kchichakly@iseesys.com

Abstract

It is very difficult to deliver high-quality softwa (i.e., with very few bugs) in a reasonable time
period. Indeed, it is not unusual on medium tgégprojects to spend as much time fixing bugs
as delivering new features. One of the most chgifey issues in software development is
keeping pace with changing customer requirements.

Agile development was born from the idea that safemdevelopment needs to be quick on its
feet, responding to changing customer requiremeitk®ut compromising delivery schedules or
quality. It was founded on the principle of emlingcchange rather than fighting it. Some of the
fundamental principles of Agile development inclulequent customer interaction, frequent
releases, writing tests before code, nightly buidth automated testing, and not implementing
more than you know the customer needs.

Yet there is a surging debate about whether Agitekes and when it works. This paper

investigates when Agile development methods makwod the relative advantages of different
parts of the methodology.

Keywords: Agile, Rework Cycle, Software DevelopmeRroject Management

Overview
This paper explores the implications of the follog/facets of Agile development:

» Short development cycles, or more specificallygfient releases — these cycles are
generated by the model

» Using a schedule/quality tradeoff that leads tdhhotdiscovered and discovered rework
moving from one release to the next (in particuldrat are the implications startinga
project with a large amount of undiscovered andalisred rework?)

* Frequent customer interactions

* Frequent reviews between developers

» “Test first” (rather than code first)beforeany code is written

* Frequent integrations, nightly builds with autondategression tests

» Availability to customers of frequent stable buil@s. established and defined betas)

* Having a less predictable set of releases in t#id {does not impact this model)

* Being adaptive to regularly changing requiremehtn¢e the name “agile”), including
adapting processes as required

» Main metric is working software vs. tasks completed

* Close face-to-face cooperation and communication

» Continuous attention to technical excellence armtigtesign

* Always choose simple (spec or design) over comigdta it may change!

Software development is notorious for delivering tittle too late, often with many bugs. Itis
very difficult to deliver high-quality software @., with very few bugs) in a reasonable time
period. Indeed, it is not unusual on medium tgédaprojects to spend as much time fixing bugs
as delivering new features. The reasons for ttasnaany, but the rework cycle we have been
studying gives a lot of insight into the problem.

One of the most challenging issues in software ldgweent has been changing customer
requirements. Since software is fungible, mostrygvee has some idea of how to change it.
Also, it is a documented phenomenon that peopleataadequately visualize how a piece of

software is going to work by walking through exaegpl As soon as the real thing is there, they
instantly find several things that need to be cleangPrototyping, RAD, and spiral development
have all been things that have been tried to ctoge gap. Finally, the 90s saw a lot of

companies shifting to a more customer-centric agghrogiven heightened competition and

greater expectations.

Agile was born from the idea that software develeptmeeds to be quick on its feet, while at
the same time delivering quality software (in taed of software, change is usudigd because

it means the introduction of lots of new bugs).ddad, Agile was founded on the principle of
embracing change (it is a fact of life) rather tifighting it.

Yet there is a surging debate about whether Agdeks/ (and when it does). A lot of people feel

it is just a bunch of hooey that someone made umake some money. Others think it only
works for specific types of people (and that themen’t that many of them around). Then there

Modeling Agile Development 2 © 2007 by K. Chichakly

are those who are religious zealots about it. Iinaere are people like me who think there are
some good ideas there, but the entire thing aglkeage is a bit much for most people to use (and
rather unproven).

This paper investigates when Agile methods may veordt the relative advantages of different
parts of the methodology.
The Rework Cycle

The dynamics of a project revolves around the r&wgcle. The structure below was given to
the author by Jim Lyneis:

original work
accomplishment
—/
error fraction original work done
Original \56 correctl
Work to Do ~ rework
rework generation — acconplishment
on original work / Work Done
/ D
error fraction rework done AL
correctly
Rework to Do Undiscov ered
K] Rework
AN rework generation
on rework
—/
rework

discov ery

time to discover rework

Each project begins with a stock of original wookdib. As the work is completed, a fraction of
the work is done incorrectly (determined éyor fraction). This rework remains undiscovered
for a time. As itis discovered, it is fixed, ag@enerating a fraction of errors. Eventually,cdll
the work and rework is completed and the projectinshed. Note that rework is not just
restricted to specific bugs that have been intredua the code, but also includes problems in
the customer requirements and the project design.

Both theerror fractionand thetime to discover reworRlay critical roles. If therror fractionis

high, much of the work will need to be redone.thi time to discover reworis very long, the
rework may not be discovered until late in the gcbjcycle, or even worse, after the product has
shipped. Even worse, tharror fraction necessarily increases when there are errors in the
system, because the code that new code is beitgftagainst is not producing the correct
results. This is called the “errors on errors fesak” and it is a reinforcing loop (shown below).

It is therefore advantageous to decreasditie to discover reworls much as possible.

Modeling Agile Development 3 © 2007 by K. Chichakly

normal error/_\

fraction + error fraction
+ Undiscov ered
AN Rework
incremental errors from reworl.<
undiscov ered rework generation
+
(R) work believed
to be done
fraction of undiscovered +
errors incorporated fraction work done

+ containing errors

In the waterfall paradigm, the entire project iaqad inOriginal Work to Doand the project
progresses until most of the required work is catgal. In Agile, however, the project is broken
down into separate phases (four in these simuksitiowhen each phase is completed, based on
a measure of quality of the completed wddkiginal Work to Dais injected with the work for

the next phase.

Agile Background

The most fundamental precept of Agile is that tlvelec base never stray very far from a
completely working systerh.This is guaranteed with a number of basic priesip

The first is an automated build and test systenh rilnas every single night. This verifies the
code correctly builds on all supported platformd afso regression tests it to make sure nothing
was broken. Errors in the build or the testing r@gorted via e-mail or RSS feed so everyone
knows right away that something is amiss. Alsoewit is successful, an quasi-official build is
available for manual testing (for this is the sasystem that builds official releases; this is a
critical point: release builds are just nightlyilda that meet a certain criteria, so testing is
always being performed on whatever eventually geigped).

The second is the concept of “Test first”. Thisame programmers are responsible for designing
and writing automated tedteforethey write the actual code that needs to be testéis serves
many purposes, the most transparent one bein@ragtees a body of regression tests (so-called
“unit tests”). More importantly, it forces the gm@ammer to think about the number of ways his
code might break before he writes the code, thgsirerg he writes more robust code. Finally,
as he writes the code, he now has something toittegfainst (as he goes) rather than just
assuming the thing works.

1t is possible to have experimental branches efctide that don't really work, but they should nesteay too far
(or too long) from the trunk (main branch).

Modeling Agile Development 4 © 2007 by K. Chichakly

All regression tests must stay current. When a begvis found that none of the regression tests
uncovered, a new test is added for that specibblpm. This ensures the bug will not reappear
in later versions by incorporating what has beanned into the nightly automated tests.

Lastly, customer releases must be frequent, perhapsften as once a month, to get quick
feedback and to ensure effort is not being sperannunproductive direction (e.g., an over
specified feature). These short cycles make ity w@ifferent from other approaches. A
consequence of never straying far from a workirgjesy is also that most people applying these
techniques offer intermediate alpha versions taorners at the end of every single week,
shortening the feedback delay even more. Customersalso usually closely involved in
deciding the features that need to be implemerthay @et a vote anyway).

All of this leads to a system that is neither schediriven nor feature-driven, though both of
these aspects still play important roles. Thegiegito release is based more on “Is it working?”
by some standard that will be different for a wgdlikhtermediate) release than for an “official”
release. “Is there something useful to someong2he second most important question. It
doesn’t really matter anymore how much is doneacty what features are there because
another release isn’t far behind (and a less-stalelekly release is even closer behind if the
customer is willing to take the risk).

To clarify the standards, the weekly releases daante a very high threshold. Pretty much if it
built and passed all the automated tests, it careleased. The monthly (or bimonthly) release
needs to pass more stringent tests, but even ttasde relaxed in the face of the weekly
releases that can patch a problem (and the comidene gets from automated regression tests).
This means that both discovered rework and undeseal rework can move from release to
release. Indeed, the fact of trying to meet a imgniarget — and that the fact of a periodic
release is more important than what is in it — nsetlrat some of theriginal work will also
move from one release to another.

The combination of automated builds and testsjngritests first, and frequent releases all lead
to a reduction in the time to discover rework. sTfeduces the size of undiscovered rework,
which reduces the gain of the errors-on-errorsoeamng loop, thus allowing an Agile project to
complete in advance of an equivalent waterfall gobj

Modeling Agile Development 5 © 2007 by K. Chichakly

Base Run

The base run is a consistent schedule, waterfalAgite. The consistent schedule chosen was 5
experienced staff members working on 100 tasks @Zmeeks with an estimated rework
fraction of 0.3. It was expected that Agile woftiltish close to the waterfall model, perhaps a
little earlier. As can be seen, it finishes a nhogdirly while the waterfall model finishes a month
late.

pg Equivalent Staff: 1-2 -
1: 6.0

.—-P'_‘\
. 2—/‘_ 2=

1 1 \\

1: 0.0 1=
0.00 10.00 20.00 30.00 40.00
Page 2 Months 11:00 PM Tue, Nov 28, 2006
ﬂ a @f ? 1. Waterfall, 2: Agile

While the Agile project required less work to bendpit cost exactly the same as the Waterfall
project:

‘;Q Cumulative Work Done: 1 -2 -
1 200

1: 100 /2
/

1" ~2

52
-1
1 0
0.00 10.00 20.00 30.00 40.00
Page 4 Months 11:00 PM Tue, Nov 28, 2006
ﬂ a =Fa ? 1: Waterfall, 2: Agile

Modeling Agile Development 6 © 2007 by K. Chichakly

‘;Q Cumulative Person Months: 1 - 2 -

1 200
/ R
/
1: 100 /’/ el
/'/
2
L
17
2/
e
1: 0
0.00 10.00 20.00 30.00 40.00
Page 5 Months 11:00 PM Tue, Nov 28, 2006
ﬂ a =Fa '? 1: Waterfall, 2: Agile

The error fractions and productivities are showlowegthe error fraction spikes are just a DT-

length artifact of switching phases). Note theg hoth lower in the Agile case (as expected —
they are both lower because of the features buittthe process to keep quality high). It is also
interesting to note the total rework done in eaafec(shown last, and again lower in the Agile
case).

pﬁ error fraction: 1 -2 -
1: 0.45

W "‘2' e -,
1 -0.05
0.00 15.00 30.00 45.00 60.00
Page 6 Months 11:00 PM Tue, Nov 28, 2006
ﬂ a @f ? 1. Waterfall, 2: Agile

Modeling Agile Development 7 © 2007 by K. Chichakly

‘;Q productivity: 1 -2 -
1 1.00=

"1 -1 1
| . .
AT]
1: 0.60 2
5‘ |
1: 0.20

0.00 15.00 30.00 45.00 60.00
Page 8 Months 11:00 PM Tue, Nov 28, 2006
Na=s ?

1: Waterfall, 2: Agile

‘;Q Cumulative Rework Done: 1 -2 -

1 40
T
1 Il R /'l
P S
w1 _,-_—F‘”"J-
/—f’z
1: o 1==2
0.00 10.00 20.00 30.00 40.00
Page 10 Months 11:00 PM Tue, Nov 28, 2006
ﬂ a =Fa ? 1: Waterfall, 2: Agile
Modeling Agile Development 8

© 2007 by K. Chichakly

Analyses
Inconsistent Project

The obvious first question is how much better (if)gis Agile with an inconsistent case? The
inconsistent case chosen is starting with 4 expeee staff members to finish 100 tasks in 25
weeks. In this situation, Agile finishes in morgf (2 months late) vs. waterfall's month 31.
Note the more consistent staffing with the shottgles. Also note that required staffing grows
quicker in the Agile case. This is due to the gpues of the shorter phases; we know sooner that
we need more staff members. This earlier feedbamte gives Agile an edge over waterfall.

‘;Q Equivalent Staff: 1-2 -
1: 15.0

1: 7.5 5 ,1/ \
2
zf/ -1
-.44"’_’_’_,_,_,—1—
s 1’
AY
\ L
1: 0.0
0.00 10.00 20.00 30.00 40.00
Page 2 Months 11:22 AM Wed, Nov 29, 2006
ﬂ a =Fa '? 1: Waterfall, 2: Agile

The lower error fractions in Agile lead to less wdyeing done. This combined with the
significantly earlier finish leads to lower costs.

pﬁ Cumulative Work Done: 1 -2 -
1 200

/ﬂl 1

1 100 /_

7
.1’
1 0
0.00 15.00 30.00 45.00 60.00
Page 4 Months 11:22 AM Wed, Nov 29, 2006
ﬂ a @f ? 1. Waterfall, 2: Agile

Modeling Agile Development 9 © 2007 by K. Chichakly

‘;Q Cumulative Person Months: 1 - 2 -

1 300
/ i l
1 150 g
// 2
s :” .
2/
L~
1: 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 11:22 AM Wed, Nov 29, 2006
ﬂ a =Fa '? 1: Waterfall, 2: Agile

Note the fact that we develop the project in phagiés minimum quality requirements means
thatUndiscovered Reworkever grows out of control, so we do not get Hrge error-on-error
effects we see in the waterfall case.

pﬁ Undiscovered Rework: 1 - 2 -

AR
Y \

4 \
NN~)

1: 0 1=72 j—
0.00 15.00 30.00 45.00 60.00
Page 7 Months 11:22 AM Wed, Nov 29, 2006
ﬂ a @f ? 1. Waterfall, 2: Agile

Note these benefits are accrued despite havingrlpreeluctivity due. This is because the focus
on high quality (which causes much of this produtiloss) keeps the error fraction and the
rework generated low.

Modeling Agile Development 10 © 2007 by K. Chichakl

‘;Q productivity: 1 -2 -

1: 1.10

fl

\k 1 1
~ e

1: 0.65 k
1 0.20

0.00 15.00 30.00 45.00 60.00

Page 8 Months 11:22 AM Wed, Nov 29, 2006

Na=s#s ?

‘;Q error fraction: 1 - 2 -

1: Waterfall, 2: Agile

1: 0.60
] s
1: 0,30
L]
1: 0.00
0.00 15.00 30.00 45.00 60.00
Page 6 Months 11:22 AM Wed, Nov 29, 2006
ﬂ a =Fa ? 1: Waterfall, 2: Agile
‘;Q Total Rework Generated: 1 - 2 -
1: 90
~1 1
1 45
/1/
p— Py 5
e
e
>
1~
1: 0
0.00 15.00 30.00 45.00 60.00
Page 11 Months 11:22 AM Wed, Nov 29, 2006

Na=s#s ?

Modeling Agile Development

1: Waterfall, 2: Agile

11

© 2007 by K. Chichak

Inconsistent Project with Uncertain Customer Reeuients

In the face of uncertain customer requirements ciwtigile was designed to address, Agile

performs even better.

Agile still finishes aroumdnth 27 (at month 27.8 - 2.8 months late)

while waterfall runs almost out to month 40 (at moB9.8 - 14.8 months late). The cost for
waterfall is almost 50% higher than Agile, whileetbverall Agile cost has changed very little
from the case without uncertain customer requirdmen

pg Equivalent Staff: 1-2 -

1:

1:

20.0

10.0

s \’/\

)

\

0.0

0.00 10.00 20.00 30.00 40.00
Page 2 Months 11:39 AM Wed, Nov 29, 2006
ﬂ a @f ? 1. Waterfall, 2: Agile
pg Cumulative Person Months: 1 - 2 -
1: 300 / 1
1
) . B /
- 7
1
P
2/
|~
1 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 11:39 AM Wed, Nov 29, 2006
ﬂ a @f ? 1. Waterfall, 2: Agile

Modeling Agile Development 12

© 2007 by K. Chichak

Summary of Inconsistent Missions

The following tables summarize the two inconsistangsion cases, first without and then with
uncertain customer requirements. Note that Agieetbpment provides a definite advantage to
projects that have an inconsistent mission, fimgti4% earlier at about 75% of the cost.

Project Delta from | Project Cost Delta from | Work Completed Delta from
Project Type| Length (mo) Base (%) (person-mo) Base (%) (tasks) Base (%)
Waterfall: 31.25 212.84 183.04
Agile: 26.9375 -13.8 163.82 -23.03 118.68 -35.16

With uncertain customer requirements, Agile realfynes, cutting 30% off the project length
(only two months late vs. 15 months late) at aro6@% of the cost. Clearly, Agile lives up to
its purpose of resiliency in the face of changingtomer requirements.

Project Delta from | Project Cost Delta from | Work Completed Delta from
Project Type| Length (mo) Base (%) (person-mo) Base (%) (tasks) Base (%)
Waterfall: 39.75 290.98 258.11
Agile: 27.875 -29.8 178.58 -38.63 127.93 -50.44

Modeling Agile Development 13 © 2007 by K. Chichakl

Analysis of Benefits of Individual Aspects of Agile
Benefits of Frequent Releases and Customer Inierect

For this test, the base case has all Agile effeotsed off. This will then be compared to the
same case with only the frequent release effecteturon, both with and without uncertain
customer requirements. The inconsistent missied pseviously will be retained as a baseline.

Frequent releases serve to reduce customer umdtgrtas do frequent customer interactions.
This cuts the uncertainty in half, as well as clagghe shape of the curve to be more
consistent. The traditional shape for waterfaghewn on the left below while the revised shape
for Agile on the right.

Moo b n s 1.000

EIITII;?IDH S U S SO SO SRRSO af

gttt bt uricertainty

based |:|r1-IrI O bazed on

pogressstd i G b =S S T T O
||:|.|:||:||:| = g g g 842 =z 8 3z = 0.000 T S

fraction_perceived_to_..omplete {dimensionless} fraction_perceived to_...omplete {dimensionless}

As shown in the following graph, there frequentasles and customer interactions have little to
no effect if there are not changing customer regments (graphs 1 and 2). However, in the case
of uncertain customer requirements (graphs 3 anthdje is a marked improvement, finishing
after 41.75 months rather than 50) when there r@guént releases and customer interactions.
Not surprisingly, the cost is also much lower.

Modeling Agile Development 14 © 2007 by K. Chichakl

‘;Q Equivalent Staff: 1-2-3-4 -

1: 7.0
—_—1 L
Ji \V \/‘z
4. g
/17'{ 2—" ,f-— 1y -\'i

%
1 T
1: 0.0 ==
0.00 15.00 30.00 45.00 60.00
Page 2 Months 11:51 AM Wed, Nov 29, 2006
ﬂ a @f ? 1. Multiphase, 2: w/Releases, 3: Multiphase uncertain, 4: w/Releases
‘;Q Cumulative Person Months: 1 -2 -3 -4 -
1 300
e G
P
34 4
s e
1
A
1: LG
- s
3
- 2/‘
o 1
4
/3/
2
~
-1
L 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 11:51 AM Wed, Nov 29, 2006
ﬂ a %f ? 1. Multiphase, 2: w/Releases, 3: Multiphase uncertain, 4: w/Releases

Benefits of Nightly Builds and Automated Testing

For this test, the base case has all Agile effeotsed off. This will then be compared to the
same case with only the automated testing effacietl on, both with and without uncertain
customer requirements. The inconsistent missied pseviously will be retained as a baseline.

Nightly build and automated tests lead directlyatehorter rework discovery delay (reduces the
maximum from 12 months to J#asesmonths, wherghasesis the number of phases in the
project). Themaximum time to discovery rewowkll also be varied to see if the model is
sensitive to its value.

Note that automated testing has a significant effeth without (graphs 1 and 2) and with

(graphs 3 and 4) uncertain customer requiremelmghe former case, the project finishes 7.5
months earlier (month 28.7 vs. 36.25), while in kger case the project finishes 17.5 months

Modeling Agile Development 15 © 2007 by K. Chichakl

earlier (month 32.5 vs. 49.8). Once again theaetpge costs are much lower, although the work
completed in each case is virtually identical (rekvgenerated is almost the same).

pﬁ Equivalent Staff: 1-2-3-4 -
1: 8.0

b
i
Y
\!
¥
1
\

Ay
3
Ay
‘ W |
1: 0.0 2 A

1= 2 S My
0.00 15.00 30.00 45.00 60.00
Page 2 Months 12:01 PM Wed, Nov 29, 2006
ﬂ a @f ? 1: Multiphase, 2: w/Autotest, 3: Multiphase uncertain, 4: w/Autotest
pﬁ Cumulative Person Months: 1-2-3-4 -
1: 300
P E—
P
L~ /_,3L4 4
// o 1
4 ,;417’,:—
T
1 150 o o
e
2
,/,,)4"
JE /f..fl
/}//
3
2
L~
1 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 12:01 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/Autotest, 3: Multiphase uncertain, 4: w/Autotest

To test the sensitivity of thenaximum time to discover reworthe base case (curve 1) was
compared against the automated tests case witbridieal time (curve 3), double the original
time (curve 2) and half the original time (curve 4)is clear from the progression of the curves
that the model is somewhat sensitive to this valbwever, halving it made little difference
(only a one month improvement), while doublingtitl provided a significant effect (5 months

better) over the base case. Halving it also leadroexcessive ramp-up in the first phase,
suggesting the value might be too small.

Modeling Agile Development 16 © 2007 by K. Chichakl

‘;Q Equivalent Staff: 1-2-3-4 -

1 7.0 4_\
/ T ~ 4
—— 3 —
3 zﬁ_::-;—‘éﬁ‘g,w’—-l\
V4
/‘2-*/ L
1
1 3.5 \
{
1: 0.0 p—K—r—
0.00 10.00 20.00 30.00 40.00
Page 2 Months 12:11 PM Wed, Nov 29, 2006
ﬂ a =Fa ? 1: Multiphase, 2: w/Autotest double, 3: w/Autotest normal, 4: w/Autotest half

These changes had little impact on the project cost

pﬁ Cumulative Person Months: 1-2-3-4 -

1: 200
1
i s D oz
[—— 7 =34 ==3==4
1: 100 '
f"./-//
7
y 4
7
#
/2
.1
1 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 12:11 PM Wed, Nov 29, 2006
ﬂ a @f ? 1: Multiphase, 2: w/Autotest double, 3: w/Autotest normal, 4: w/Autotest half

Benefits of “Test First”

For this test, the base case has all Agile effeotsed off. This will then be compared to the
same case with only the “test first” effect turr@d both with and without uncertain customer
requirements. The inconsistent mission used pusiyowill be retained as a baseline.

The “test first” effect lowers productivity (andos¥s initial progress) by 10% as tests are written
instead of shipping code It also decreases the normal error fraction%y 5

2 Note this also could have been implemented byeasing the scope of the project. | felt decreatirg
productivity more accurately represented what digthappens.

Modeling Agile Development 17 © 2007 by K. Chichakl

Note that “test first” gives about a two month imypement in the delivery date in both cases,
though it is slightly less in the face of uncertausstomer requirements (curves 3 and 4). The
project cost, however, is higher, especially in thee of uncertain customer requirements —
despite slightly lower total work done due to a éowerror fraction. This is because productivity
is lower in “test first” due to the time requirea Wwrite the tests. The cost is that much higher
when there are changing customer requirements beddue project runs longer at the lower

productivity.

‘;Q Equivalent Staff: 1-2-3-4 -
1 8.0

1: 0.0 2 1 p—p—K—v———1
0.00 15.00 30.00 45.00 60.00
Page 2 Months 12:20 PM Wed, Nov 29, 2006
ﬂ a =Fa ? 1: Multiphase, 2: w/Test first, 3: Multiphase uncertain, 4: w/Test first
‘;Q Cumulative Person Months: 1-2-3 -4 -
1: 300
A 4
/ e G
/ e
/ 3’/
"
r/-'/"/' 1
1: 150 //
//rz/v* ’
R 4%/1
3f
*
-
-1
1 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 12:20 PM Wed, Nov 29, 2006
ﬂ a =Fa ? 1: Multiphase, 2: w/Test first, 3: Multiphase uncertain, 4: w/Test first

Modeling Agile Development 18 © 2007 by K. Chichakl

‘;Q productivity: 1-2-3-4 -
1.10

L

VIR
i

A1

L 0.10
0.00 15.00 30.00 45.00 60.00
Page 8 Months 12:20 PM Wed, Nov 29, 2006
ﬂ a =Fa ? 1: Multiphase, 2: w/Test first, 3: Multiphase uncertain, 4: w/Test first

‘;Q Cumulative Work Done: 1-2-3-4 -

L 200
p—3— ——
i
-~ 1
N T am 2
/";1/
1: LQQ //..I
4
1/2 35/#
<
4
=
- 4
1
L 0
0.00 15.00 30.00 45.00 60.00
Page 4 Months 12:20 PM Wed, Nov 29, 2006
ﬂ a =Fa ? 1: Multiphase, 2: w/Test first, 3: Multiphase uncertain, 4: w/Test first

Benefits of Design and Code Reviews

For this test, the base case has all Agile effeotsed off. This will then be compared to the
same case with only the reviews effect turned ath lwith and without uncertain customer
requirements. The inconsistent mission used pusWowill be retained as a baseline.

Frequent reviews between developers, including paigramming (which | think most people

can only tolerate in very short doses) and fac&te- communication, leads to both a lower
normal error fraction and a lower productivity (3&guction on both). Continuous attention to
technical excellence and design may also lower ywrtndty somewhat, but definitely lowers

error fraction. It has been assumed that the S®6cteon already given for reviews sufficiently
covers this effect as well.

Note that having design and code reviews improlkesptoject schedule by about three months
in both cases at about the same cost. There i®desh cost savings (about 4%) without

Modeling Agile Development 19 © 2007 by K. Chichakl

customer changes (curves 1 and 2). These aredi@doportionally lower levels of rework
generation (because of a lower error rate), andéhdntal work done.

pﬁ Equivalent Staff: 1-2-3-4 -
1: 7.0

4
3{ /_314‘<3 ~
1 -1
ﬁZ;g—
1
/
1 3.5
1: 0.0 2 Py,
0.00 15.00 30.00 45.00 60.00
Page 2 Months 1:09 PM Wed, Nov 29, 2006
ﬂ a @f ? 1: Multiphase, 2: w/Reviews, 3: Multiphase uncertain, 4: w/Reviews
pﬁ Cumulative Person Months: 1-2-3-4 -
1: 300
/_¢—3—4
o
/3f
ﬁ;;,. 1—
21
1: 150 4,§-' =
273
S
e —— / L
**
el
el
1 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 1:09 PM Wed, Nov 29, 2006
ﬂ a @f ? 1: Multiphase, 2: w/Reviews, 3: Multiphase uncertain, 4: w/Reviews

Modeling Agile Development 20 © 2007 by K. Chichakl

‘;Q Total Rework Generated: 1-2-3 -4 -

1 70 | o ———
rd
~
A 4
374
- r’-/
A
23 1
1 35 ‘#,’-_r// 1
e > 2
ff
P\
/3.-"' 1o
.—P’F-FF’—’“
7 7
o1
L 0
0.00 15.00 30.00 45.00 60.00
Page 11 Months 1:09 PM Wed, Nov 29, 2006
ﬂ a =Fa ? 1: Multiphase, 2: w/Reviews, 3: Multiphase uncertain, 4: w/Reviews

Benefits of Keeping Things Simple

For this test, the base case has all Agile effeotsed off. This will then be compared to the
same case with only the KISS effect turned on, beifn and without uncertain customer
requirements. The inconsistent mission used pusWowill be retained as a baseline.

Choosing simple over complicated both reduces dnawtion and the effect of rework for
uncertain customer requirements (because you hawet’ developed everything that the
customer may be changing). Rather than reduciagethor fraction, | decided it made more
sense to reduce the strength of the errors onseafbect because that is where complexity is
likely to cause the worst trouble (reduce by 10%hhe uncertain customer requirements effect
was also reduced another 5%.

Note that choosing simpler solutions has a mingraat (1 month - curves 1 and 2) on both the
schedule and the cost when customer requiremeatsatarchanging and a dramatic impact (6.5
months - curves 3 and 4) when they are. Thesegelsaare directly tied to the amount of rework
generated. The improvements can be clearly sedheirgraphs ofncremental errors from
undiscovered reworlwhich includes discovered rework as well) ancbr fraction.

Modeling Agile Development 21 © 2007 by K. Chichakl

‘;Q Equivalent Staff: 1-2-3-4 -

1: 7.0
v3
p 7 NG
cjész;?
1',..2535475’&//—‘/
¢
1 3.5
2
(8
1: 0.0 ===
0.00 15.00 30.00 45.00 60.00
Page 2 Months 1:18 PM Wed, Nov 29, 2006
ﬂ a @f ? 1. Multiphase, 2: WKISS, 3: Multiphase uncertain, 4: wWKISS
‘;Q Cumulative Person Months: 1-2-3 -4 -
1: 300
’_,ﬂf—3
-~
4
7
% 1—,
1
o
1: 150+
- "
3
- =
1
4
/3/
2
‘_,_.#"
-1
1: 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 1:18 PM Wed, Nov 29, 2006
ﬂ a %f ? 1: Multiphase, 2: wKISS, 3: Multiphase uncertain, 4: wKISS

‘;Q Total Rework Generated: 1-2-3 -4 -
1: 70

IN

1
1
0.00 15.00 30.00 45.00 60.00
Page 11 Months 1:18 PM Wed, Nov 29, 2006
ﬂ a @f ? 1. Multiphase, 2: WKISS, 3: Multiphase uncertain, 4: wWKISS

Modeling Agile Development 22 © 2007 by K. Chichakl

pg incremental errors from undiscovered rework: 1 -2 -3 -4 -

. _(\
NN

] 2 B ey

1 0.00
0.00 15.00 30.00 45.00 60.00

Page 9 Months 1:18 PM Wed, Nov 29, 2006
q a @f ? 1: Multiphase, 2: w/KISS, 3: Multiphase uncertain, 4: W/KISS

pﬁ error fraction: 1-2-3-4 -

1: 0.75

1 0,40 L ~ g
2 L
Iﬁx \ /\KA‘& /—”\ 3
1 , \ 4
ARSI SR
‘ ’, |T?’Q}ﬂ'4k2h e
1_
1: 0.05
0.00 15.00 30.00 45.00 60.00
Page 6 Months 1:18 PM Wed, Nov 29, 2006
ﬂ a @f ? 1: Multiphase, 2: w/KISS, 3: Multiphase uncertain, 4: wW/KISS

Summary of Individual Effects

The above results are summarized in the followwg tables. The first shows the results

without uncertain customer requirements, while seeond shows the results with uncertain
customer requirements. As can be seen from tHe babow, frequent releases have no impact
when there are not changing customer requiremefin. the other hand, nightly builds and

automated tests give a tremendous advantage iis @frivoth time and cost. “Test first” gives a

modest gain in schedule at a modest cost. Theimargawo effects show modest advantages in
both time and cost.

Modeling Agile Development 23 © 2007 by K. Chichakl

Agile feature Project Delta from | Project Cost Delta from Work Completed Delta from
(known reqgs) Length (mo) Base (%) | (person-mo) Base (%) (tasks) Base (%)

Base (none): 36.375 178.33 135.35

Frequent release: 36.375 0.p0 178.33 Q.00 135.35 00 O.
Nightly builds/test: 28.6875 -21.18 155.13 -13.01 3354 -1.26
"Test First": 34.125 -6.14 186.42 4.54 128.70 -4.91
Design/Code reviews| 33.4375 -8.08 170.68 -4.29 ar7 -6.16
KISS: 35.1875 -3.26 171.12 -4.04 132.51 -2.10

The story is a little different when there are ajiag customer requirements. Frequent releases,
nightly builds, and avoiding complexity have strasunedule and cost gains while reviews have
modest schedule gains with no difference in cd$est First” has a smaller impact than in the
previous case at a higher cost.

Does this then mean that the doctrine of “test™fishould be abandoned? Unfortunately, the
automated tests that run with nightly builds (yietfda very strong benefit in both time and cost)
depend on the automated tests being written. Vehdtiey are written first or last does not

directly affect the productivity, though writingdm last tends to increase the error fraction,
worsening the results shown in the table. In otwerds, to reap the benefits of nightly

automated tests, the testsistbe written and it is better to write them firsth@ar than last. This

is not a potential practice to drop.

Agile feature Project Delta from | Project Cost Delta from Work Completed Delta from
(uncertain regs) Length (mo) Base (%) | (person-mo) Base (%) (tasks) Base (%)

Base (none): 49.875 263.66 167.57

Frequent release: 41.625 -16.54 210.61 -20.12 348.8 -11.18
Nightly builds/test: 32.5625 -34.71 203.54 -22.80 6783 0.16
"Test First": 48 -3.76 288.53 9.43 162.74 -2.88
Design/Code reviews| 47.0625 -5.64 263.10 -0.21 .80 -4.00
KISS: 43.25 -13.28 219.12 -16.99 153.16 -8.60

Agile Without Frequent Releases

One of the burning questions is whether these gseprovements still work without frequent
official releases. Since Agile assumes that yauadways working in small releasable chunks,
even if you don’t actually release the product,dtidhis aspect be retained in the comparison?
This is hard to answer equivocally because thetkbei differences between projects in the
amount of customer interaction and releases toctistomer. These tests have been run
assuming these remain the same as for the wateafs!.

Without uncertain customer requirements, thereidifference between frequent releases (curve
3) and not having frequent releases (curve 2).e[Whterfall case is included for comparison in
curve 1.]

Modeling Agile Development 24 © 2007 by K. Chichakl

‘;Q Equivalent Staff: 1-2-3 -

1

1:

Page 2

20.0
10.0
LN
o 1/;:-;_’_'_‘— t \ t
“ \
0.0 1=2==3 = l==2==3 Y
0.00 15.00 30.00 45.00 60.00
Months 1:32 PM Wed, Nov 29, 2006

Na=s#s ?

However, when there are uncertain customer reqeinésn there is an improvement in the
schedule (1.5 months) by having frequent releasésastomer interaction. In addition, there is
a cost savings. This isn’t a big surprise becdrespuent releases showed an improvement on

their own.

‘;Q Equivalent Staff: 1-2-3 -

1

Page 2

1: Waterfall, 2: Agile no releases, 3: Agile w/releases

20.0

8

2==3;

0.00

N8=s 7

Modeling Agile Development

15.00

30.00
Months

= l==2==3
45.00 60.00
1:35 PM Wed, Nov 29, 2006

1: Waterfall, 2: Agile no releases, 3: Agile w/releases

25

© 2007 by K. Chichak

‘;Q Cumulative Person Months: 1 -2 -3 -
1 300

w
w

150

1:
45.00 60.00

1:35 PM Wed, Nov 29, 2006

30.00
Months

1: Waterfall, 2: Agile no releases, 3: Agile w/releases

15.00
Page 5

Na=s#s ?

These results are summarized in the tables beldhe first table shows the results without
changing customer requirements. Not surprisingiiyog we already saw frequent releases have
no impact in this case), failing to have frequaléases and customer interactions has no impact.

Project Delta from | Project Cost Delta from | work Completed Delta from
Project Type | Length (mo) Base (%) (person-mo) Base (%) (tasks) Base (%)
Waterfall: 31.25 212.84 183.04
Agile: 26.9375 -13.8 163.82 -23.03 118.68 -35.16
Agile no rels: 26.9375 -13.8 163.82 -23.03 118.68 -35.16

However, with changing customer requirements, tieeenoticeable difference. Failure to have
frequent releases increases the project length158onGonths) and the cost 12%. Note there is
also more work to accomplish (11%). This is frodditional rework that must be done due to
increasedUndiscovered Reworkom changing customer requirements. This alsmideto a
higher error fraction due to the errors-on-erreedback, causing even more rework.

Project Delta from | Project Cost Delta from | work Completed Delta from
Project Type | Length (mo) Base (%) (person-mo) Base (%) (tasks) Base (%)
Waterfall: 39.75 290.98 258.11
Agile: 27.875 -29.87 178.58 -38.63 127.93 -50.44
Agile no rels: 29.3125 -26.26 199.77 -31.85 141.46 -45.19
Cost of no rels: 5.16 11.87 10.58

Modeling Agile Development

26

© 2007 by K. Chichak

Sensitivity of Assumptions

A number of assumptions have been made about hdivAgie performs in terms of error
fraction and productivity. What if the error framt improvements in Agile aren’t as high as
suggested (or the waterfall error fraction is lofeMhat if the price of Agile is even higher in
terms of productivity? This will very likely beue in the early stages of adoption. Additionally,
what if these changes also have a relative impacteav staff members (or maybe we were too
optimistic originally)? Using the inconsistent simn, the following series of tests look at a
progressive worsening of these parameters, as showine table below. Note the relative
impact of new staff members in Agile is never wotBan the waterfall case, which seems
reasonable.

normal incr.
Case error Normal errors: productivity:
number fraction productivity new staff new staff
Waterfall:
1 0.15 1.00 0.50 0.50
Agile:
2 0.05 0.85 0.35 0.65
3 0.08 0.80 0.40 0.60
4 0.11 0.75 0.45 0.55
5 0.15 0.70 0.50 0.50
6 0.18 0.65 0.50 0.50

The following curves show the staffing behaviorstcand work done for the six cases. Note
that while most of the Agile cases finish beforeclose to, the waterfall case, all but two of the
Agile cases are more expensive than the waterdak.c This is despite the fact that all of the
Agile cases accomplish less work (fewer tasks) tvercourse of the project.

Note also how the first phase of most of the Agideses over-staffs in an attempt to finish on
time. Some of this staff is subsequently let gthemsecond phase.

ﬂ Equivalent Staff: 1-2-3-4 -
1: 20.0

1: 10.0

1 0.0
0.00 10.00 20.00 30.00 40.00
Page 2 Months 9:55 PM Sun, Dec 10, 2006
ﬂ a @,’ ? 1: Waterfall, 2-6: Agile

Modeling Agile Development 27 © 2007 by K. Chichakl

ﬂ Cumulative Person Months: 1-2-3-4 -

1: 400

1 200

1 0

0.00 15.00 30.00 45.00 60.00

Page 5 Months 9:55 PM Sun, Dec 10, 2006
ﬂ a @f ? 1: Waterfall, 2-6: Agile

ﬂ Cumulative Work Done: 1-2-3-4 -

1: 200

1 100 S /

1 0

0.00 15.00 30.00 45.00 60.00
Page 4 Months 9:55 PM Sun, Dec 10, 2006
ﬂ a @f ? 1: Waterfall, 2-6: Agile

The higher Agile costs are easily explained byghaductivity curves. Productivity in Agile is
considerably below the waterfall case across thiesgproject.

Modeling Agile Development 28 © 2007 by K. Chichakl

ﬂ productivity: 1-2-3-4 -
1: 1.05

—x

1 0.55+

L 0.05
0.00 15.00 30.00 45.00 60.00
Page 8 Months 9:55 PM Sun, Dec 10, 2006
ﬂ a =Fa ? 1: Waterfall, 2-6: Agile

Finally, the total work accomplished is lower ih Agile cases because the rework generated is
lower than in the waterfall case.

ﬂ Total Rework Generated: 1-2-3-4 -

L 90
. i //
’_'_,_,;-
/ e e
-~ il
»-""!' ._;-4-""'-'_.—’_
-~
%fﬂ
L 0
0.00 15.00 30.00 45.00 60.00
Page 11 Months 9:55 PM Sun, Dec 10, 2006
ﬂ a =Fa ? 1: Waterfall, 2-6: Agile

This is, of course, directly tied to lower erroadtions in the Agile case across the entire project
(shown below). Lower error fractions also meamwadr errors-on-errors effect. The bump in
the first phase of each Agile case is caused byiragrup the staff at the beginning.

There is something of a paradox here, though. Eamvthe error fraction remain lower than the
waterfall case when the last two cases (five axjdsst the Agile error fraction equal to and then
greater than the waterfall case? This is becaugemental errors from undiscovered rework
stays smaller due to a slightly smaller effectha Agile case, a shorter rework discovery delay,
and the clearing out @fndiscovered Rewordt the end of each phase.

Modeling Agile Development 29 © 2007 by K. Chichakl

ﬂ error fraction: 1-2-3-4-5 -
1 0.60

L
1 0.00-T
0.00 15.00 30.00 45.00 60.00
Page 6 Months 9:55 PM Sun, Dec 10, 2006
ﬂ a =Fa ? 1: Waterfall, 2-6: Agile

ﬂ incremental errors from undiscovered rework: 1-2-3-4-5 -
1 0.40

A
N

X
B % g
1: 0.00-T T }_
0.00 15.00 30.00 45.00 60.00
Page 9 Months 9:55 PM Sun, Dec 10, 2006
ﬂ a =Fa ? 1: Waterfall, 2-6: Agile
ﬂ Undiscovered Rework: 1-2-3-4-5-
1 20
1 10
\v ’gg(“\ L,
| RSN
1: 0 T T
0.00 15.00 30.00 45.00 60.00
Page 7 Months 9:55 PM Sun, Dec 10, 2006
ﬂ a =Fa ? 1: Waterfall, 2-6: Agile

Modeling Agile Development 30 © 2007 by K. Chichakl

These results are summarized in the table belowte fhat all of these tests were done with
uncertain customer requirements turned off. tllear from the table that Agile roughly breaks
even with waterfall (4% earlier at 9% higher cogshlen Agile has a slightly better error fraction

(and much worse productivity). When the error ticatreaches parity with waterfall, the project

takes longer and costs quite a bit more. Furtlegratiation leads to much higher costs. As
stated earlier, these last two cases are moreg likeeén the methodology is first adopted, giving
the classic worse-before-better behavior.

There is no question that Agile will normally gis®meimprovement in error fraction over
waterfall and it is hard to believe that produdgiwwill be much worse than the 75% given in that
middle case (4). Therefore, conservatively, una@mal circumstances with an inconsistent
mission, we expect Agile to be no later than walkrivith about a 10% increase in cost. If we
are able to improve productivity somewhat while éoiwg error fraction even more (case 3),
Agile can beat the waterfall schedule with no addal cost. This is, of course, assuming the
maximum rework discovery delay has been reducethoAgh changes to this parameter have a
relatively small impact on the Agile case, the drddference is enough to tip the balance back
to waterfall.

Delta Project Delta Delta
Project from Cost from Work from
Case normal error normal incr. errors: productivity: || Length Base (person- Base Completed Base
number fraction productivity new staff new staff || (mo) (%) mo) (%) (tasks) (%)
Waterfall:
1 0.15 1.00 0.50 0.5 31.25 212.84 183.04
Agile:
2 0.05 0.85 0.35 0.6 26.9375 -13.80 163.82 -23.03 8.6BL -35.16
3 0.08 0.80 0.40 0.6 28.375 -9.20 193.49 -9/09 1P7.4-30.40
4 0.11 0.75 0.45 0.5 29.9375 -4.20 231.85 8.93 1037.1-25.10
5 0.15 0.70 0.50 0.5 31.8125 1.80 286.12 3443 849.6-18.23
6 0.18 0.65 0.50 0.5 32.875 5.20 333.64 5676 157.943.71

With uncertain customer requirements, Agile wins inueverything except cost in the last two
cases (shown below — graphs follow). This is,airse, the case that Agile was born to handle.
Note that even in case 5, when the error fractothesameas in the waterfall case (but the
productivity ismuchlower), Agile finishes almost 20% ahead of the exfall case with only a
6% increase in project cost. Also take a momentdaimpare the project lengths with those
above. Observe that uncertain customer requiresyrghed every Agile case back by less than
a month. Compare this to the 8.5 month differancéne waterfall case. Clearly, this is where
Agile shines.

Modeling Agile Development 31 © 2007 by K. Chichakl

Delta Project Delta Delta
incr. Project from Cost from Work from
Case normal error normal errors: productivity: || Length Base (person- Base Completed Base
number fraction productivity new staff new staff |[(mo) (%) mo) (%) (tasks) (%)
Waterfall:
1 0.15 1.00 0.50 0.5 39.75 290.98 258.11
Agile:
2 0.05 0.85 0.35 0.6 27.875 -29.87 178.58 -38.63 97 -50.44
3 0.08 0.80 0.40 0.6 29.3125 -26.26 210.22 -21.75 6.7 -47.00
4 0.11 0.75 0.45 0.5 30.875 -22.33 251.28 -13.64 .8B46 -43.22
5 0.15 0.70 0.50 0.5 32.5625 -18.08 308.14 5.90 1169. -38.36
6 0.18 0.65 0.50 0.5 33.75 -15.09 359.85 23,67 B67.5-35.09
pﬁ Equivalent Staff: 1-2-3-4 -
1: 20.0
1 10.0 f A //
- ~
Vs
P an—a
1 0.0
0.00 10.00 20.00 30.00 40.00
Page 2 Months 11:06 PM Sun, Dec 10, 2006
ﬂ a @f ? Uncertain Customer Regs - 1. Waterfall, 2-6: Agile
pﬁ Cumulative Person Months: 1-2 -3 -4 -
1: 400
L
P /_,/
1 Ly e B e
/ ”~
~
L
///:',
:/ /’
1 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 11:06 PM Sun, Dec 10, 2006

N @&/

?

Modeling Agile Development

Uncertain Customer Regs - 1: Waterfall, 2-6: Agile

32

© 2007 by K. Chichak

‘;Q Cumulative Work Done: 1-2-3-4 -
1: 300

]
L o+
0.00 15.00 30.00 45.00 60.00
Page 4 Months 11:06 PM Sun, Dec 10, 2006
ﬂ a %f ? Uncertain Customer Regs - 1: Waterfall, 2-6: Agile

‘;Q error fraction: 1-2-3-4 -

L
1
L 0.05
0.00 15.00 30.00 45.00 60.00
Page 6 Months 11:06 PM Sun, Dec 10, 2006
ﬂ a %f ? Uncertain Customer Regs - 1: Waterfall, 2-6: Agile

These results lead to an interesting question viwere is an inconsistent schedule, but there are
not uncertain customer requirements: If we cantleatrework discovery delay in half in the
waterfall case, and also double the rework disgodeday in Agile (so they are actually the
same), will the waterfall model give similar res@lt Doing so, leads to the following behavior:

Modeling Agile Development 33 © 2007 by K. Chichakl

‘;Q Equivalent Staff: 1-2-3-4 -

1 20.0
/{2
1: 10.0
o~ '/'//
Saz= e el
F—p——T =y 4 =
‘_,f:.'fﬁ_._—-——=—=1—'2—'—’“"'_ 4*_?\\2\\
- - A
a1 4
‘\ 1
1: 0.0 l 2= =
0.00 10.00 20.00 30.00 40.00
Page 2 Months 9:27 AM Mon, Dec 11, 2006
ﬂ a @f ? 1: Waterfall, 2: Waterfall half discovery, 3: Agile, 4: Agile double discovery

The original cases are shown in curves 1 and 3ewihe curves with the same rework discovery
delays are shown on curves 2 and 4 (red and grééoie there is much less of an advantage to
Agile (about a month) which could be lost to otfaators, such as a slightly higher error fraction
or a slightly lower productivity. Agile’s costd)dugh, remain lower (25% lower) because there
is still less rework due to lower error fractiomsgdaemoving (almost) all rework before moving
to the next phase.

ﬂ Cumulative Person Months: 1-2-3 -4 -
1: 300

1: 150 %’44
P
A '2/

Pt
Z
fs;"g'
2
[~
1 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 9:27 AM Mon, Dec 11, 2006
ﬂ a %f ? 1: Waterfall, 2: Waterfall half discovery, 3: Agile, 4: Agile double discovery

Finally, under these same circumstances, does Atildhave an advantage if the error fraction
is increased while the waterfall error fractiordecreased, so they are equal (0.1)? The results
clearly show that it still does have this advantdgeshing 2 months earlier with a 10% cost
saving. This advantage is caused by a lower dragtion due to consistently lower levels of
Undiscovered ReworkThese consistently lower levels are, as mentiaalier, due to both a
short rework discovery delay and the fact thatUimeliscovered Reworis not allowed to grow
across the length of the project (it is clearedeadh phase).

Modeling Agile Development 34 © 2007 by K. Chichakl

‘;Q Equivalent Staff: 1-2-3-4 -

1: 20.0
1: 10.0 7
. 7
3/;4—=3h4 1
1 = — 3
41""* l4
\ 1
1: 0.0 l 2= =
0.00 10.00 20.00 30.00 40.00
Page 2 Months 10:32 AM Mon, Dec 11, 2006
ﬂ a @f ? 1: Waterfall, 2: Waterfall lower error, 3: Agile, 4: Agile higher error
‘;Q Cumulative Person Months: 1-2-3 -4 -
1: 300
1 1

iy

w
IN

w
IN

1 150 /i),{??

2
L~
1: 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 10:32 AM Mon, Dec 11, 2006
ﬂ a %f ? 1: Waterfall, 2: Waterfall lower error, 3: Agile, 4: Agile higher error

‘;Q error fraction: 1-2-3-4 -

1: 0.60
1”\ /\
[l \\\ '
" \\
1 0.30 m \
4 ‘1
3,
Il = S -1
4 .
D\ S A—
b 3 3
1 0.00
0.00 15.00 30.00 45.00 60.00
Page 6 Months 10:32 AM Mon, Dec 11, 2006
ﬂ a @f ? 1: Waterfall, 2: Waterfall lower error, 3: Agile, 4: Agile higher error

Modeling Agile Development 35 © 2007 by K. Chichakl

pg Undiscovered Rework: 1-2-3-4 -

/;Q

{
ﬂf NN \x

1: 0 = 1—=2—=3=4 = 1—=2=324;)
0.00 15.00 30.00 45.00 60.00
Page 7 Months 10:32 AM Mon, Dec 11, 2006
q a @f ? 1: Waterfall, 2: Waterfall lower error, 3: Agile, 4: Agile higher error
pﬁ incremental errors from undiscovered rework: 1 -2 -3 -4 -
1: 0.40
2
1)/ \\
“\
1\\
1: 0.20 2
3%’4%,#:;:
1: 0.00 324 _‘;1=2=3=4_=1=2=3=4=.
0.00 15.00 30.00 45.00 60.00
Page 9 Months 10:32 AM Mon, Dec 11, 2006
ﬂ a @f ? 1: Waterfall, 2: Waterfall lower error, 3: Agile, 4: Agile higher error

Modeling Agile Development 36 © 2007 by K. Chichakl

Additional Performance Issues
There remain two questions regarding the performan@gile:

» Can the performance be improved by prioritizing@gover original work?

» Will performance get worse if one phase’s reworktisompleted before moving onto
the next phase (something that we saw was disastoothe waterfall model)?

Surprisingly, prioritizing rework over original wiomakes little difference to the Agile case as
the rework is already being done relatively quickhgry close to as you go). The four cases
[certain customer requirements: base (1) and ipged (2), uncertain customer requirements:
base (3) and prioritized (3)] are shown below. eNibiat there is no noticeable difference in the
project length or cost in any of the cases, thaighincremental errors from rework are slightly
higher in the non-prioritized cases.

‘;Q Cumulative Person Months: 1-2-3 -4 -

1 200
- 3—4 3—4
/4 Lo Lo
7
Va
1: 100 //1
s
/ 2/
.1
1: 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 5:21 PM Mon, Dec 11, 2006
ﬂ a %f ? 1: Agile, 2: w/prior rework, 3: Agile uncertain, 4: w/prior rework

‘;Q incremental errors from undiscovered rework: 1 -2 -3 -4 -

1 0.30
{ &
%
%
1: 0.15
l &
Z%L
v
3
4
1N 304
1: 0.00 2 """_—“:1=2=3=4_=1=2=3=4=.
0.00 15.00 30.00 45.00 60.00
Page 9 Months 5:21 PM Mon, Dec 11, 2006
ﬂ a @f ? 1: Agile, 2: w/prior rework, 3: Agile uncertain, 4: w/prior rework

Modeling Agile Development 37 © 2007 by K. Chichakl

Note that there is a slight advantage to doingiththe waterfall case, bringing the project in one
month sooner at a lower cost with uncertain custaeguirements.

‘;Q Cumulative Person Months: 1-2-3 -4 -
1 300

~ 3
34 4

#*
=i
"
'l
~
-1
L 0

0.00 15.00 30.00 45.00 60.00
Page 5 Months 5:35 PM Mon, Dec 11, 2006
ﬂ a @f ? 1. Waterfall, 2: w/prior rework, 3: Waterfall uncertain, 4. w/prior rework

In this case, the incremental errors effect is astceably lower when fixing rework has top
priority.

‘;Q incremental errors from undiscovered rework: 1 -2 -3 -4 -

1 0.60
T
e ™
/;2-\\
1 0.30 L \ ~ y
'\ “\‘.
\Y
A
X
X
X
X
Y
X
Ad
h 3
1: 0.00 1=2&4—=1=2=3=4=.
0.00 15.00 30.00 45.00 60.00
Page 9 Months 5:35 PM Mon, Dec 11, 2006
ﬂ a %f ? 1: Agile, 2: w/prior rework, 3: Agile uncertain, 4: w/prior rework

With regards to the second question, there is ram@h in performance if the release quality
threshold is lowered because original work is a@msing the end of the phase in the base case.
However, if the model is changed to give prioritydriginal work and the quality threshold is
lowered from 0.99 to 0.9 (i.e., the end of phasedhold forRework To Das raised from 0.01

of original work to 0.1 of original work), thereeasome very surprising results. The project
actually finishes almost two months sooner! Infihlowing graphs, the first curve (blue) is the
base case with uncertain customer requirementssdbend curve (red) is the same case with
priority given to original work, and the final cle(magenta) lowers the quality threshold.

Modeling Agile Development 38 © 2007 by K. Chichakl

pg Equivalent Staff: 1-2-3 -
1: 10.0

/N

f—, A

.F \EIZZEE___AZ

i AN

1 5.0 [3

i \

1: 0.0 l=2==3
0.00 10.00 20.00 30.00 40.00
Page 2 Months 6:15 PM Mon, Dec 11, 2006
q a @f ? 1: Agile uncertain, 2: w/orig prior, 3: w/lower quality

As expected, the error fraction is higher due &alditional backlog obindiscovered Rewor&nd
Rework to Dgas well as that bump of new hires, which alsadsiproductivity down some).

pﬁ error fraction: 1-2 -3 -
1:

A
\

1'\3\

1 0.30 l T
A[\\
52
3 =l=—2—3—1—2—3

1 0.05

0.00 15.00 30.00 45.00 60.00
Page 6 Months 6:15 PM Mon, Dec 11, 2006
ﬂ a @f ? 1: Agile uncertain, 2: w/orig prior, 3: w/lower quality

Modeling Agile Development 39 © 2007 by K. Chichakl

‘;Q Undiscovered Rework: 1 -2 -3 -

| ~
YR

1 A A
RE A

1: 0 =2 =1l—2— :
0.00 15.00 30.00 45.00 60.00
Page 7 Months 6:15 PM Mon, Dec 11, 2006
ﬂ a %f ? 1: Agile uncertain, 2: w/orig prior, 3: w/lower quality

The explanation for the earlier finish comes frommgedence effects on productivity. Because
original work is being given priority and assignatdthe highest possible level, there are no
precedence effects on original work. Any precedegitects on rework are caused by idle time
while waiting for more rework to be discovered. #sown in curve 2 below (original work
priority), the initial high quality standard causesductivity delays at the end of each phase.
However, in the third curve, the next phase istathbefore the rework in the current phase is
completed (or even completely discovered). Theegfthe delays in discovering rework do not
occur (and precedence constraints do not applyl)thetend of the project when there is still the
desire to deliver a final quality product. Notetms last case that the precedence effects on
productivity stay at one until the very end of theject. The additional (and consistent)
productivity is what causes the project to finishlier than the base case.

Note there is considerably more rework generatethiscase, but the cost is only marginally
higher (4% - due to the better productivity on aggr and the early finish).

‘;Q effect on productivity from precedence: 1-2 -3 -

1 1.05
—1—24\:» 1—2 3 \ 1—2—3 -1l—2—3
1: 0.60 \\ \ SW $\
\ ‘ IS g
1: 0.15
0.00 15.00 30.00 45.00 60.00
Page 12 Months 6:33 PM Mon, Dec 11, 2006
ﬂ a %f ? 1: Agile uncertain, 2: w/orig prior, 3: w/lower quality

Modeling Agile Development 40 © 2007 by K. Chichakl

‘;Q Total Rework Generated: 1 -2 - 3 -
1: 40

/3,.- 3 3
.-",-
A o~ 1 1
f //
ydar
1 20 ;/ %
/
//2 ’
/l
1: 0
0.00 15.00 30.00 45.00 60.00
Page 11 Months 6:33 PM Mon, Dec 11, 2006
ﬂ a %f ? 1: Agile uncertain, 2: w/orig prior, 3: w/lower quality
‘;Q Cumulative Person Months: 1 -2 -3 -
1: 200
/ Pl e —— ——
7 ?/
d
£ o
4
Vs
v
e" 1
1: 100 -
/ 3
/ ’
.1
1: 0
0.00 15.00 30.00 45.00 60.00
Page 5 Months 6:33 PM Mon, Dec 11, 2006
ﬂ a %f ? 1: Agile uncertain, 2: w/orig prior, 3: w/lower quality

This model does not explore the corporate levelassf reducing quality this much. | do not
believe the small time savings to be worth the askd0% quality. Sensitivity tests below,
though, show the benefits saturate at the 92% lendla substantial benefit at the 98% level

(about a month) with no change in cost. This smedluction in quality between phases is
probably acceptable for many projects.

Modeling Agile Development 41 © 2007 by K. Chichakl

‘;Q Equivalent Staff: 1-2-3-4 -
1 8.0

1: 0.0 S 3= i—y
0.00 7.50 15.00 22.50 30.00
Page 2 Months 8:54 PM Mon, Dec 11, 2006

Na&s#

?

Quality - 1: Base - 99%, 2: 98%, 3: 95%, 4: 92%

ﬂ effect on productivity from precedence: 1-2-3-4 -

L 1.00-1—2—3—4 1—2—3—4 1—2 4 T
N Tl
3 1
1 T I —
1 \ VK
L 0.20
0.00 7.50 15.00 22.50 30.00
Page 12 Months 8:54 PM Mon, Dec 11, 2006
ﬂ a=s 7 Quality - 1: Base - 99%, 2: 98%, 3: 95%, 4: 92%

The graph of rework generated below gives an iddgheooverall impact on errors-on-errors of
the various quality levels. The incremental errioosn rework are shown after that. Note that
all levels of quality have the same errors-on-arreffect in the first phase. This is a

consequence of the change to giving priority tgioal work. In subsequent phases, though,
higher quality leads to lower incremental errors.

Modeling Agile Development 42 © 2007 by K. Chichakl

ﬂ Total Rework Generated: 1-2-3 -4 -
1 30

L 0
0.00 15.00 30.00 45.00 60.00
Page 11 Months 8:54 PM Mon, Dec 11, 2006
N a=s 7 Quality - 1: Base - 99%, 2: 98%, 3: 95%, 4: 92%

ﬂ incremental errors from undiscovered rework: 1 -2 -3 -4 -
1 0.24

1 0.12+

)

L2
1T [t ——&1
1 0.00 2 ke, YR
0.00 7.50 15.00 22.50 30.00
Page 9 Months 8:54 PM Mon, Dec 11, 2006
ﬂ a=s 7 Quality - 1: Base - 99%, 2: 98%, 3: 95%, 4: 92%

It is interesting to note that giving original wogkiority in the waterfall case is extremely
deleterious to the project's completion (shown betocurve one is the waterfall base case with
uncertain requirements, curve two gives priorityot@inal work, and curve three gives priority
to rework). Note also that giving priority to rekkadoes not help as much as might have been
anticipated (the no priority algorithm in placederto already favor rework a bit).

Modeling Agile Development 43 © 2007 by K. Chichakl

‘;Q Equivalent Staff: 1-2-3 -

1: 20.0
1
1: 10.0 /
/ 3
lﬂd’ziﬁs \“-‘_2\
ﬁ..-‘d
3 &
- 1,_;,.\..-!2 \\\\\ X
W

1: 0.0 S—_—

0.00 12.50 25.00 37.50 50.00

Page 2 Months 9:08 PM Mon, Dec 11, 2006

Na&s#

?

1: Waterfall uncertain, 2: w/orig prior, 3: w/rework prior

‘;Q incremental errors from undiscovered rework: 1 -2 - 3 -

L 0.70 /_\\

1: 0.35

Py N,
0.00 15.00 30.00 45.00 60.00
Page 9 Months 9:14 PM Mon, Dec 11, 2006

N8=s 7

1: Waterfall uncertain, 2: w/orig prior, 3: w/rework prior

Modeling Agile Development 44 © 2007 by K. Chichakl

Summary

In summary, Agile methods do not appear to makéference with a consistent mission. Both

the finish time and the cost are approximatelyshime despite the lower normal productivity in

Agile. This, of course, means that if there is anger of not being able to control these
parameters, or if there is reason to believe thdeAgarameters are worse than used in this
model, that managers should stick to the waterfedtel for consistent missions. Additional

support for this course of action can be foundhim ¢ost of switching (there isn’t any benefit to

switch and it will be worse before it is back te ttame again, so why do it?).

When there is an inconsistent mission, Agile meshodn win out over waterfall methods —
again, assuming you have already adopted the mathgnd and fought your way through the
worse-before-better startup transition. There hosyever, cases where even this may be risky.
As shown in the table in the middle of page 27your organization’s error fraction and
productivity under Agile fall just a little shorf ¢the values used in this model, Agile will begin
to cost more. It also very quickly begins to kit more.

Finally, when there is both an inconsistent missind uncertain customer requirements, Agile is
pretty much guaranteed to meet or beat the walteniethod, which was its main goal when it
was developed. As shown in the table at the botibpage 27, your organization’s parameters
under Agile have to be the same or worse than tfayseaterfall in order to turn out worse in
either cost or project length. This is not likelycept under the initial transition of switching to
Agile.

In conclusion, the ideas behind Agile do indeed h@iojects come in earlier when there are
changing customer requirements. The combinatidregluent releases to, and interactions with,
customers, nightly builds and automated tests, ingrittests before code, and avoiding
unnecessary complexity all work together to allv project to adapt more easily to changing
conditions.

References

Beck, K, et. al 2001. Manifesto for Agile Softwa Development,
http://www.agilemanifesto.org

Cockburn, A. 2004Crystal Clear: A Human-Powered Methodology for Smalams Addison-
Wesley: Boston, MA.

Lyneis JM. 2006. Project Dynamics. Lecture notesraster Polytechnic Institute: Worcester,
MA

Modeling Agile Development 45 © 2007 by K. Chichakl

Model Structure

Rework Cycle

project finis

precedence .
switch

switch

/—bmaximum work rate

maximum work rate on original work
based on tasks
av ailable

work believed
to be done

max work rate based
average task on original work

duration

hed /\
potential work rate

effect on Pmductlv ity on original work
from available tasks

Q / effect of overtime

productivity on productivity

N

productivity before
precedence effects

Staff on
Original Work

original work /

accomplishment

initial work to do

tasks available new work to do
to work on this phase

Original

error fraction

/
original work done
correctl

Work to Do

start new phase

rework
— acconplishment

N\
rework generation
on original work

project finished

Work Done switch

available to work on discover rework

given progress

phases automated tests

effect of work progress

to be compl

time to discov er rework

N\
total tasks that could adding work
9 error fraction rework done AL .
be worked on correctly Previous Work Dongy
ork to do Rework to Do _/ D Undlscov:red
f . Rewor
this phase 7< rework generation
on rework
agile switch
U start new phase
. . rework
fraction of tasks maximum time to discovery total work believ e

to be done

minimum time to
discov er rework

fraction really
complete Undiscovered

Rework

work believed
work to do to be done

this phase

fraction perceived

lete

Modeling Agile Development

46 © 2007 by K. Chichakl

0o i

Staff Adjustment a

excess experienced staff

/transf en\fire
average time ew staff|leaving

adjusted fraction
o transfer\fire

vary staff switch

Experienced Staf f New|ptaf f

/
staff leaving

gaini?éxperience

time to gain
experience

Total Staff

effect of experience effect of experience
on error fraction on productiv ity

experience dilution \

switch relative productivity
of new staff

project finished
switch

willingness thcess new staff

initial new staff
excess staff initial experienced staff
initial scheduled

Total Staff completion date

willingness to hire

initial scheduled

vary staff switch completion

start new phase

— 4

extra staff needed

maX|mum staff level otal staff needed
maximum total

work rate

Effective Staff

Cumulative
Person Months

thange schedule

hiring
average time
to hire phases
scheduled
convpletion date

/—ﬁme remaining/

total staff needed
based on effort and
time remaining

total staff needed
based on max work rate weight on progress

based estimates

estimated
productivity ~estimated effort ollow budget fraction perceived

remaining switch to be conplete

effect on productivity

K doing work

agile switch

New Staff

incremental error fraction
of experienced staff incremental error fraction

of new staff

est effort rem‘aMbudgeted effort

fromavailable tasks
based on progress remaining
effective prOJect flnls hed estimated
productivity switch work

weighted work
left to do
estimated

total work believed work to do rework

to be done this phase fraction
normal

productivity

Modeling Agile Development

47 © 2007 by K. Chichakl

Rework Calculations

Total Staff

project finished
switch

on originagl work

\

to rework

maximum work

minimum time to
perform rework

Staff on Rework

fraction of effort productivity before

<'rate on rework

Staff on

/Original Work

Equiv alent Staff

rework priority
0 priority
original work priority

potential work

V\ \ /ate on rework

productiv ity

precedence effects ~ on rework

productivity before

relative effort precedence effects

required for rework

Rework to Do

Original
Work to Do

rework
ccomplishment

weighted work
left to do

relative effort
required for rework

Work Metrics

a8

maximumwork rate
on original work

maximum total
work rate

maximumwork
rate on rework

potential work
rate on rework

potential work rate
on original work

effect on productivity
from precedence

potential
work rate

project finished
switch

original work
acconplishment

total work
accomplishment

rework
acconplishment

Cumulative Metrics

8

original work done
correctly

rework done

correctly Cumulative

Work Done

Cumulative
Rework Done

3

rework generation
on original work

rate of doing work

y 3

rework generation
on rework

Total Rework
Generated

&

generating rework

)

reworking

Modeling Agile Development

48

© 2007 by K. Chichakl

Phase Bookkeeping

8

change

Original
Work to D

project finished
switch

Undiscovered
Rework

change initial
undiscov ered rework

latent work

Latent Work in Sy stem

start new phas

Initial
Undiscov ered Rework

Rework to Do

Undiscovered Rework
This Phase

reviews reviews switch
\’ ‘\/
iss‘_/kiss switch
automated tests automated test switch
~—

ﬂest first™
= A

test first switch
agile switch frequent releases frequent release switch

work to d
this phasz‘\
new work to do
this phase

initial work to do

fraction perceived
to be conplete

adjusted fraction of
total perceived complete

fraction of total
/perceived complete

total work believed
to be done

Uncertain Requirements

maximum effect of
uncertain customer
requirements

elimination of
uncertainty based
on progress freq

kiss

elimination of

N

effect of uncertain
customer requirements

frequent releases

Errors on Errors

errors on
errors switch

Undiscovered
Rework

Rework to Do

maximum error.

.

fraction

mect of uncertain

customer requirements

/error fractio
normal error \
fraction effect of schedule

pressure on error fraction

incremental errors from
undiscov ered rework effect of experience

on error fraction

fraction of undiscov ered
errors incorporated effect of overtime

on error fraction

uncertainty based uncertain
on progress std requirements
switch

)

fraction perceived
to be conplete

Modeling Agile Development

fraction work done
containing errors

sensitivity of
incremental errors

to past errors

49

© 2007 by K. Chichakl

precedence effects

effect of sc hedule\

schedule pressure
pressure on productivity

switch
effect of schedule pressure
on productivity relation

sensitivity for effect
of schedule pressure
on productivity

&vertime switch

agile switch

effect of schedule
pressure on error fraction

normal
pmductlv ity imputed cost per

month of overru

effect of schedule pressure
on error fraction relation

=

aglle switch

test first
sensitivity for effect rewews
of schedule pressure
on error fraction initial schedule
antlmpaled

schedule ov errun\

project finished
switch

overtime switch
scheduled
conpletion date

.,

perceived

initial scheduled completion date

conpletion

time to perceive
real schedule

- . allow schedule slip
indicated completion date

based on progress

fraction perceived
to be conplete

. started new phase
estimated effort

remaining Equivalent Staff

start new phase

Schedule Pressure a Schedule Slip a
effect of experience productivity before .
- Cunulative
on productivity

Person Months

Total Project
Cost

Imputed Project Cost

increasing

imputed cost

project finished

switch
scheduled
ompletion dat
perceived
conpletion date
willingness
to slip
schedule
slip switch

B

Overtime

8

effect of overtime
on error fraction
relation

overtime delay overtime switch

maximum ov ertime
allowed

overtime fract|o

/)

|nd|cated overtime

/ ‘\ Effective Staff

total staff needed

effect of overtime
on productiv ity
relation

on productivity

Total Staff
effect of fatigue
time to (:1eve|op/_\‘f'5m9ue on productivity
fatigue relation

effect of fatigue
on error fraction

. maximum effect
relation

of fatigue on

maximum effect productiv ity

of fatigue on

. effect of fatigue
error fraction

~ » ON error fraction

effect of overtime
on error fraction

effect of overtime

maximum effect

effect of fatigue
on productiv ity

maximum effect
of overtime on
error fraction

of overtime on
productiv ity

Cumulative Metrics

Cumulative_Rework Done(t) = Cumulative_Rework _Donrelt) + (reworking) * dt
INIT Cumulative_Rework_Done = 0 {tasks}
INFLOWS:

reworking = rework_done_correctly + rework_genenation_rework {tasks/mo}

Modeling Agile Development 50

© 2007 by K. Chichakl

Cumulative_Work_Done(t) = Cumulative_Work_Done(it) + (rate_of doing_work) * dt

INIT Cumulative_Work_Done = 0 {tasks}

INFLOWS:

rate_of doing_work = original_work_done_correctlyework _generation_on_original_work +
rework_done_correctly + rework_generation_on_rewtakks/mo}

Total_Rework_Generated(t) = Total_Rework_Generatedt]) + (generating_rework) * dt

INIT Total_Rework_Generated = 0 {tasks}

INFLOWS:

generating_rework = rework_generation_on_originalrkm rework _generation_on_rework {tasks/mo}

Errorson Errors
error_fraction = maximum_error_fraction - ((maximuenror_fraction - normal_error_fraction)*(1 -
incremental_errors_from_undiscovered_rework*errors errors_switch)*(1 -
effect_of schedule_pressure_on_error_fraction)®¥ffect of experience_on_error_fraction)*(1 -
effect_of uncertain_customer_requirements)*(1 eaffof overtime_on_error_fraction)) {dimensionless}
errors_on_errors_switch = 1{dimensionless}
DOCUMENT: Setto 1 to enable the errors on erfeesiback loop. Otherwise, set to zero.
fraction_work_done_containing_errors = IF (total rivdbelieved_to_be done = 0 OR project_finished_cwit
THEN O
ELSE (Rework_to Do + Undiscovered Rework)/total kvdrelieved to_be done {dimensionless}
incremental_errors_from_undiscovered_rework = (1 -
normal_error_fraction)*fraction_of undiscovered cesr incorporated*
sensitivity_of incremental_errors_to_past_errolisghsionless}
maximum_error_fraction = 1 {dimensionless}
normal_error_fraction = IF test_first AND reviewsiEN 0.05
ELSE IF test_first OR reviews THEN 0.10
ELSE 0.15 {dimensionless}
sensitivity _of incremental_errors_to_past_errofB kiss THEN 0.8 ELSE 0.9 {dimensionless}
DOCUMENT: Used to scale graphical function "fractiof undiscovered errors incorporated”. Normady
to one for no scaling (range is zero to one).

Decrease sensitivity when including discovered mdviio calculation so it is comparable to numbergwh
didn't separate discovered rework out.

fraction_of undiscovered_errors_incorporated = GRERction_work_done_containing_errors {dimensiasg
(0.00, 0.00), (0.1, 0.1), (0.2, 0.2), (0.3, 0.8)4(0.4), (0.5, 0.5), (0.6, 0.6), (0.7, 0.7), (@EB),
(0.9,0.9), (1, 1.00)

Overtime
effect_of fatigue_on_error_fraction =
maximum_effect_of fatigue on_error_fraction*effenft fatigue on_error_fraction_relation {dimensiordps
effect_of fatigue_on_productivity =
maximum_effect_of fatigue on_productivity*effect_&dtigue _on_productivity _relation {dimensionless}
effect_of overtime_on_error_fraction =
maximum_effect_of overtime_on_error_fraction*effeaft overtime_on_error_fraction_relation +
effect_of fatigue_on_error_fraction {dimensionless}
DOCUMENT: The fatigue effect from overtime is adda here to create an aggregate effect of overtime
effect_of overtime_on_productivity = 1 +
maximum_effect__of overtime_on_productivity*effeat_overtime_on_productivity relation +
effect_of fatigue_on_productivity {dimensionless}
DOCUMENT: The (negative) fatigue effect from oven is added in here to create an aggregate éfteut
overtime. This technically should affect "produitii before effects”, but this relies on a suboat@
calculation from this (total staff needed).
Effective_Staff = (1 + overtime_fraction)*Total_#Ht§people}
DOCUMENT: Effective number of full-time people wing on the project (FTES).

Modeling Agile Development 51 © 2007 by K. Chichakl

fatigue = SMTH3(overtime_fraction, time_to_devel&atigue) {dimensionless}
indicated_overtime = IF (Total_Staff <> 0)

THEN MIN(MAX(total_staff needed - Total_Staff, 0)fal_Staff, maximum_overtime_allowed)

ELSE 0 {dimensionless}
maximum_effect__of overtime_on_productivity = Odifiensionless}
maximum_effect_of fatigue on_error_fraction = Odinfensionless}
maximum_effect_of_fatigue on_productivity = 0.5{dinsionless}
maximum_effect_of _overtime_on_error_fraction = {fiBnensionless}
maximum_overtime_allowed = 0.5 {dimensionless}

DOCUMENT: Largest fraction of overtime allowed imanagement.
overtime_delay = 1 {months}

DOCUMENT: This is short because the reaction terbme pressure is usually pretty quick.
overtime_fraction = overtime_switch*SMTH3(indicatavertime, overtime_delay) {dimensionless}
overtime_switch = 0 {dimensionless}

DOCUMENT: Set to one to enable overtime and zerdisable it.
time_to_develop_fatigue = 6 {months}
effect_of fatigue_on_error_fraction_relation = GRAFatigue {dimensionless})

(0.00, 0.00), (0.1, 0.02), (0.2, 0.04), (0.3, 0)076.4, 0.12), (0.5, 0.195), (0.6, 0.275), (0.B8®), (0.8, 0.5),

(0.9,0.72), (1, 1.00)
effect_of fatigue_on_productivity _relation = GRAR&t{gue {dimensionless})

(0.00, 0.00), (0.1, -0.01), (0.2, -0.035), (0.3p4), (0.4, -0.105), (0.5, -0.155), (0.6, -0.22),

(0.7,-0.31), (0.8, -0.415), (0.9, -0.61), (1, €9.0
effect_of overtime_on_error_fraction_relation = GRAovertime_fraction {dimensionless})

(0.00, 0.00), (0.1, 0.02), (0.2, 0.04), (0.3, 0)078.4, 0.13), (0.5, 0.2), (0.6, 0.295), (0.7,10,4

(0.8, 0.56), (0.9, 0.775), (1, 1.00)
effect_of overtime_on_productivity relation = GRAf@ertime_fraction {dimensionless})

(0.00, 0.00), (0.1, 0.1), (0.2, 0.2), (0.3, 0.8)4(0.4), (0.5, 0.5), (0.6, 0.6), (0.7, 0.7), (0B),

(0.9,0.9), (1, 1.00)

DOCUMENT: This is assumed a linear effect. Ofrseu it won't be, but fatigue will handle this.

Phase Bookkeeping

Initial_Undiscovered_Rework(t) = Initial_Undiscoeer Rework(t - dt) + (change_initial_undiscovereavark) *
dt

INIT Initial_Undiscovered_Rework = 0 {tasks}

INFLOWS:

change_initial_undiscovered_rework = IF start_nelvage THEN (Undiscovered_Rework -
Initial_Undiscovered_Rework)/DT ELSE 0 {tasks/mo}

Latent_Work_in_System(t) = Latent_Work_in_Systentt) + (change_latent_work) * dt

INIT Latent_Work_in_System = 0 {tasks}

INFLOWS:

change_latent_work = IF start_new_phase THEN (@aigiWork_to_Do + Rework_to_Do +
Undiscovered_Rework - Latent_Work_in_System)/DT ELG{tasks/mo}

adjusted_fraction_of total_perceived _complete faldile_switch AND fraction_of total perceived_cowgtpl +
1l/phases < 1)
THEN (1 - fraction_perceived_to_be_complete) {rekeaxcess staff at start of each phase}
ELSE fraction_of _total perceived_complete
DOCUMENT: Don't let fraction complete exceed 508tilun last phase during agile (otherwise, weshetff
go between phases).
agile_switch = 1 {dimensionless}
DOCUMENT: Setto 1 to enable Agile tests (zerodonventional waterfall).
automated_test switch = 1 {dimensionless}
DOCUMENT: Set to zero to disabled nightly buildelsautomated testing (Agile only).
automated_tests = agile_switch AND automated_tegtcls {dimensionless}
fraction_of total_perceived_complete = total worlliéved to be done/initial_work to_do {dimensiosles

Modeling Agile Development 52 © 2007 by K. Chichakl

frequent_release_switch = 1 {dimensionless}
DOCUMENT: Set to zero to turn off the effects ifquent releases and customer interactions (Agde a
uncertain customer requirements only).

frequent_releases = agile_switch AND frequent_sseawitch {dimensionless}

kiss = agile_switch AND kiss_switch {dimensionless}

kiss_switch = 1 {dimensionless}
DOCUMENT: Set to zero to disable the KISS (Kee$ithple Stupid) effects in agile.

new_work_to_do_this_phase = initial_work_to_do/mgsadasks}

phases = IF agile_switch THEN 4 ELSE 1 {dimensiss}e

reviews = agile_switch AND reviews_switch {dimensiess}

reviews_switch = 1 {dimensionless}
DOCUMENT: Set to zero to disable the effects afige and code reviews, as well as pair programraird
commitment to technical and design excellence @giily).

start_new_phase = agile_switch AND (NOT projectisfied_switch) AND fraction_of total perceived_coeipl<
0.95 AND Original_Work_to_Do < 0.04*work_to_do_thjshase AND Rework_to_Do <
.01*work_to_do_this_phase {dimensionless}
DOCUMENT: We start a new phase if we haven't fiei$ (and aren't close to finishing - within 5%) avelve
finished a significant amount of the original wdgk least 96% - numbers down to 90% have littletauthl
effect) and have met a given standard of qualggqithan 1% errors).

test_first = agile_switch AND test_first_switch fdénsionless}

test_first_switch = 1 {dimensionless}
DOCUMENT: Set to zero in Agile to turn off "testdt".

Undiscovered_Rework_This_Phase = MAX(0, UndiscodeRework - Initial_Undiscovered Rework) {tasks}

work_to_do_this_phase = new_work_to_do_this_phalsatent Work _in_System {tasks}
DOCUMENT: All work that must be done this phasgcliiding things we don't know about, such as
undiscovered rework). Note that most of this iswn (Undiscovered Rework is marginal), so we usedkien
in policy decisions that should only be based amgthwe know. If we run cases where Undiscoverea/drk
becomes larger (unlikely), we will need to sepamteanother variable for these policies (estimatentk and
start_new_phase).

Rework Calculations

Equivalent_Staff = IF project_finished_switch THENELSE Total_Staff {people}

fraction_of _effort_to_rework = MIN(Z1,
maximum_work_rate_on_rework*relative_effort_reqdiréor_rework/(MAX(0.001,

maximum_work_rate_on_rework*relative_effort_reqdiréor_rework +

maximum_work_rate_on_original_work))) {dimensiordgs
maximum_work_rate_on_rework = Rework _to_Do/minimtime_to_perform_rework {tasks/mo}
minimum_time_to_perform_rework = 0.25 {months}
no_priority = 1 {dimensionless}

DOCUMENT: Set to one to have no priority, i.e.,wlork as best we can as it comes in (other tworitige

must be zero).
original_work_priority = 0 {dimensionless}

DOCUMENT: Set to one to give original work prigritother two priorities must be zero).
potential_work_rate_on_rework = productivity on_oel#Staff on_Rework {tasks/mo}
productivity_on_rework = productivity before preeede_effects/relative_effort_required_for_rework

{tasks/mo/person}
relative_effort_required_for_rework = 1 {dimensiess}

DOCUMENT: This is the effort required to fix pravhs relative to original work. A value of 1 medins

effort is the same. A value of 0.5 means it tha§ the effort while a value of 2 means it takege the effort.
rework_accomplishment = MIN(potential_work_rate_mwwork, maximum_work_rate_on_rework) {tasks/mo}
rework_priority = 0 {dimensionless}

DOCUMENT: Set to one to give rework priority (otttevo priorities must be zero).
Staff_on_Original_Work = Equivalent_Staff - Staffi diRework {people}

Staff_on_Rework = no_priority*fraction_of_effort_teework*Equivalent_Staff +

rework_priority*MIN(maximum_work_rate_on_rework/gtoctivity _on_rework, Equivalent_Staff) +

Modeling Agile Development 53 © 2007 by K. Chichakl

original_work_priority*MAX(Equivalent_Staff - maximm_work_rate_on_original_work/
productivity before_precedence_effects, 0) {people}
weighted_work_left to_do = Original_Work_to_Do +ative_effort_required_for_rework*Rework_to_Do {3

Rework Cycle

Original_Work_to_Do(t) = Original_Work_to_Do(t -)dt (adding_work - rework_generation_on_original rkve
original_work_done_correctly) * dt

INIT Original_Work_to_Do = new_work_to_do_this_pk&sasks}

INFLOWS:

adding_work = IF start_ new_phase THEN (new_workdto this_phase)/DT ELSE 0 {tasks/mo}

OUTFLOWS:

rework_generation_on_original_work = error_fractionginal_work_accomplishment {tasks/mo}

original_work_done_correctly = (1 - error_fractidmiginal_work_accomplishment {tasks/mo}

Previous_Work_Done(t) = Previous_Work_Done(t -#{shipping_product) * dt

INIT Previous_Work_Done = 0 {tasks}

INFLOWS:

shipping_product = IF (start_new_phase OR proj@ustfed_switch) THEN Work_Done/DT ELSE 0 {tasks/mo}

Rework_to_Do(t) = Rework_to_Do(t - dt) + (reworksdbvery - rework_generation_on_rework -
rework_done_correctly) * dt

INIT Rework_to_Do = 0 {tasks}

INFLOWS:

rework_discovery = Undiscovered_Rework/time_to_oN&s_rework {tasks/mo}

OUTFLOWS:

rework_generation_on_rework = error_fraction*rewakcomplishment {tasks/mo}

rework_done_correctly = (1 - error_fraction)*rewodccomplishment {tasks/mo}

Undiscovered_Rework(t) = Undiscovered_Rework(f) -tdfrework_generation_on_original_work +
rework_generation_on_rework - rework_discovery} * d

INIT Undiscovered_Rework = 0 {tasks}

INFLOWS:

rework_generation_on_original_work = error_fractionginal_work_accomplishment {tasks/mo}

rework_generation_on_rework = error_fraction*rewaakcomplishment {tasks/mo}

OUTFLOWS:

rework_discovery = Undiscovered_Rework/time_to_oN&s_rework {tasks/mo}

Work_Done(t) = Work_Done(t - dt) + (original_workomke_correctly + rework_done_correctly - shippingdurct)
* dt

INIT Work_Done = 0 {tasks}

INFLOWS:

original_work_done_correctly = (1 - error_fractidm)iginal_work_accomplishment {tasks/mo}

rework_done_correctly = (1 - error_fraction)*rewodccomplishment {tasks/mo}

OUTFLOWS:

shipping_product = IF (start_new_phase OR proj@usted switch) THEN Work_Done/DT ELSE 0 {tasks/mo}

average_task_duration = 1 {mo}

effect_on_productivity from_available_tasks = lFFqfject_finished_switch OR
potential_work_rate_on_original_work = 0) THEN 1 %&£ MIN(1,
maximum_work_rate_on_original_work/potential_workter on_original_work) {dimensionless}

fraction_perceived_to_be_complete = work_believedbé done/work_to_do_this_phase {dimensionless}

fraction_really_complete = Work_Done/work_to_dosthihase {dimensionless}

initial_work_to_do = 100 {tasks}

max_work_rate_based_on_original_work = Original_Wdo_Do/average_task_duration {tasks/mo}

maximum_time_to_discover_rework = IF automatedst&$tEN 12/phases ELSE 12 {mo}

Modeling Agile Development 54 © 2007 by K. Chichakl

DOCUMENT: Although it is true there may be rewdhlat shows up later than specified here, if we alo n
divide the rework discovery between the phases;ammot reasonably compare projects completed in one
phase to projects completed in a number of phaséiserefore behooves shorter projects to takesste ensure
that the rework discovery delay is shortened (wiigile does, so we are safe). Project that damthe
modeled by removing the division (the result issdistrous when the rework delay is larger than¢heduled
project).

NOTE: Added automated tests switch to controludeig division or not.
maximum_work_rate_based_on_tasks_available = tagkilable to work_on/average_task_duration {task$/m
maximum_work_rate_on_original_work = IF precedemsgatch

THEN maximum_work_rate_based_on_tasks_available

ELSE max_work_rate_based_on_original_work {task$/mo
minimum_time_to_discover_rework = 0.25 {mo}
original_work_accomplishment = productivity*Stafh cOriginal_Work {tasks/mo}
potential_work_rate_on_original_work = productivibefore _precedence_effects*Staff _on_Original_Work

{tasks/mo}
precedence_switch = 1 {dimensionless}
productivity = productivity before_precedence_eff&effect_on_productivity from_available_tasks*

effect_of overtime_on_productivity { tasks/mo/pargo
project_finished_switch = IF Work_Done + Previouso/ Done >= initial_work_to_do - 0.4 {epsilon} THEN

ELSE 0 {dimensionless}
tasks_available_to_work _on = MAX(total_tasks_thatld _be worked_on - work believed to_be done -

Rework_to_Do, 0) {tasks}
time_to_discover_rework = effect_of work_progresa¥mum_time_to_discover_rework + (1 -

effect_of work progress)*minimum_time_to_discovemwork {mo}
total_tasks_that_could_be_ worked_on = MIN(1, fiattiof tasks available_to_work _on_given_progress +

agile_switch*0.12)*work_to_do_this_phase {tasks}

DOCUMENT: We have to bump up task fraction by Oii2gile or we would have no tasks to work on.isTh

may seem arbitrary, but with a smaller scope theeggorobably fewer interdependencies (meaningutdco

probably be bumped up even more). However, cat britaken on an Agile project to reduce the nurabe
dependencies as too many will severely limit thenber of people on the project (relative to a tiadl
project).

total_work_believed_to_be_done = Previous_Work_Dbiéork Done + Undiscovered Rework {tasks}

work_believed _to_be done = Work_Done + UndiscoveRenvork {tasks}

effect_of work progress = GRAPH(fraction_really qdete {dimensionless})

(0.00, 1.00), (0.1, 1.00), (0.2, 0.95), (0.3, 0,86)4, 0.75), (0.5, 0.6), (0.6, 0.4), (0.7, 0.49)8, 0.15), (0.9,

0.05), (1, 0.00)
fraction_of tasks_available_to_work_on_given_pregre GRAPH(fraction_perceived_to_be complete

{dimensionless})

(0.00, 0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.4)4(®.5), (0.5, 0.6), (0.6, 0.7), (0.7, 0.8), (DA,

(0.9, 1.00), (2, 1.00)

Schedule Pressure

anticipated_schedule_overrun = IF project_finistesdtch THEN 0 ELSE (perceived_completion_date -
scheduled_completion_date)/MAX(17.5, scheduled_detigm_date) {dimensionless}
DOCUMENT: We never divide by less than 17.5 beeduos short projects (e.qg., the first phase of dtimu
phase project), schedule pressure is too severubeof the very early due date (differences aactidn of
the actual due date are very large).

effect_of schedule_pressure_on_error_fraction schedule_pressure_switch
THEN sensitivity for_effect_of schedule_pressure evror_fraction*
effect_of schedule_pressure_on_error_fraction ioglat (1 -
sensitivity for_effect_of schedule_pressure_on refraction) - 1
ELSE 0 {dimensionless}

effect_of schedule_pressure_on_productivity = Irestile_pressure_switch

Modeling Agile Development 55 © 2007 by K. Chichakl

THEN sensitivity for_effect of schedule_pressure mroductivity*
effect_of schedule_pressure_on_productivity retetiql -
sensitivity for_effect_of schedule_pressure_on_pectdity)
ELSE 1 {dimensionless}

indicated_completion_date_based_on_progress = liivilgnt_Staff <> 0 THEN TIME +
estimated_effort_remaining/Equivalent_Staff ELSBMEI {months}

normal_productivity = IF test_first AND reviews THED.85
ELSE IF test_first THEN 0.9
ELSE IF reviews THEN 0.95
ELSE 1 {tasks/mo/person}

perceived_completion_date = SMTH1(indicated_conmmtetdate_based_on_progress,
time_to_perceive_real_schedule, initial_schedulechgtetion) {months}

productivity before_precedence_effects = normaldpetivity*effect_of schedule_pressure_on_produttivi
effect_of experience_on_productivity{tasks/mo/peiso

schedule_pressure_switch = 1 {dimensionless}
DOCUMENT: Switch to enable schedule pressuresrodyztivity to make up for schedule delays (sadre
to enable and zero to disable).

sensitivity for_effect_of schedule_pressure_on refraction = IF overtime_switch THEN 0.5 ELSE IF
agile_switch THEN 0.75 ELSE 1 {dimensionless}
DOCUMENT: Reduce schedule pressure effect if imgeting overtime or Agile (give overtime precedgnce

sensitivity for_effect_of schedule_pressure_on_petidity = IF overtime_switch THEN 0.5 ELSE IF
agile_switch THEN 0.75 ELSE 1 {dimensionless}
DOCUMENT: Reduce schedule pressure effect if im@aating overtime or Agile (give overtime precedgnce

started_new_phase = DELAY(start_new_phase, DT) édisionless}
DOCUMENT: Pulses in the first DT of the new ph&s& start_new_phase which pulses in the last Dihef
previous phase).

time_to_perceive_real_schedule = IF started_newsefi&lEN DT ELSE 1 {months}
DOCUMENT: At the start of each phase, the delagset to DT to reinitialize the smooth for thisaph. Note
that this only works because it is a SMTH1 (a SMT#Rild require 3*DT to reset) and that it introds@n
artifactual 1 DT delay in the response of schegudéssure (in that one DT, pressure will essentladly
removed). DT is small enough that we do not hawedrry about this.

effect_of schedule_pressure_on_error_fraction ioglat GRAPH(anticipated_schedule_overrun {dimenkass})
(-0.2, 0.85), (-0.1, 0.97), (-2.78e-017, 1.00)1(@.03), (0.2, 1.08), (0.3, 1.17), (0.4, 1.25)5(@..34), (0.6,
1.39), (0.7, 1.40)

effect_of schedule_pressure_on_productivity retetic?GRAPH(anticipated_schedule_overrun {dimensissje
(-0.2, 0.85), (-0.1, 0.97), (-2.78e-017, 1.00)1(@.03), (0.2, 1.08), (0.3, 1.17), (0.4, 1.25)5(@..34), (0.6,
1.39), (0.7, 1.40)

Schedule Slip

Imputed_Project_Cost(t) = Imputed_Project_Costif) -+ (increasing_imputed_cost) * dt

INIT Imputed_Project_Cost = 0 {person-mo}

INFLOWS:

increasing_imputed_cost = IF (TIME < initial_sch&stl completion) OR project_finished_switch
THEN O
ELSE imputed_cost_per_month_of_overrun {person-im&nonth}

imputed_cost_per_month_of _overrun = 10 {person-im&nmonth}
schedule_slip_switch = 0 {dimensionless}
DOCUMENT: Setto 1 to enable schedule slippingdze disable).
scheduled_completion_date = initial_scheduled_cetigi + (perceived_completion_date -
initial_scheduled_completion)*willingness_to_slifltav_schedule_slip*schedule_slip_switch {months}
Total_Project_Cost = Cumulative_Person_Months +uteg Project_Cost {person-months}
willingness_to_slip = 1 {dimensionless}
DOCUMENT: Ranges from zero to one. One meanscsiippletely, zero means slip not at all.
allow_schedule_slip = GRAPH(fraction_perceived_®_dpmplete {dimensionless})

Modeling Agile Development 56 © 2007 by K. Chichakl

(0.00, 1.00), (0.1, 1.00), (0.2, 1.00), (0.3, 1,q0)4, 1.00), (0.5, 1.00), (0.6, 1.00), (0.7, 3,00

(0.8, 1.00), (0.9, 1.00), (1, 1.00)

DOCUMENT: Controls period over which it is okaystip project (allows there to be schedule pressuthe
beginning of the project).

Staff Adjustment

Cumulative_Person_Months(t) = Cumulative_Person_thig(h - dt) + (doing_work) * dt

INIT Cumulative_Person_Months = 0 {person-months}

INFLOWS:

doing_work = IF project_finished_switch THEN 0 EL&Hective Staff {person-months/month}

Experienced_Staff(t) = Experienced_Staff(t - d{gaining_experience - staff _leaving) * dt

INIT Experienced_Staff = initial_experienced_stgféople}

INFLOWS:

gaining_experience = New_Staff/time_to_gain_expege

OUTFLOWS:

staff_leaving = IF vary_staff _switch THEN
willingness_to_transfer\fire*excess_experiencedf/steerage_time_to_transfer\fire ELSE 0 {people/mo}
DOCUMENT: We remove inexperienced staff beforeezignced staff.

initial_scheduled_completion(t) = initial_scheduledmpletion(t - dt) + (change_schedule) * dt

INIT initial_scheduled_completion = initial_schedd| completion_date/phases {months}

INFLOWS:

change_schedule = IF start_new_phase THEN (TIM#itiai_scheduled_completion_date/phases -
initial_scheduled_completion)/DT ELSE 0 {months/mo}

New_Staff(t) = New_Staff(t - dt) + (hiring - gairgnexperience - new_staff leaving) * dt
INIT New_Staff = initial_new_staff {people}
INFLOWS:
hiring = IF vary_staff switch
THEN willingness_to_hire*extra_staff needed/averdigee to_hire
ELSE 0 {people}
DOCUMENT: Note we could also add staff by realkima, but here assume hiring is the worst case.
OUTFLOWS:
gaining_experience = New_Staff/time_to_gain_expege
new_staff leaving = IF vary_staff _switch THEN
willingness_to_transfer\fire*excess_new_staff/ageraime_to_transfer\fire ELSE 0 {people/mo}

average_time_to_hire = 4

average_time_to_transfer\fire = 1 {month}
DOCUMENT: Reallocation is usually fairly quick.

budgeted_effort_remaining = (estimated_work/normadductivity)*(1 - fraction_perceived_to_be_complet
{person-months}

effect_of experience_on_error_fraction = IF exparée dilution_switch
THEN (New_Staff*incremental_error_fraction_of newaf§+

Experienced_Staff*incremental_error_fraction_of exgnced_staff)/(New_Staff + Experienced_Staff)

ELSE 0 {dimensionless}
DOCUMENT: The incremental error fraction basedadiitional new staff (where fraction is betweerozer
and one).

Note (New_Staff + Experienced_Staff) is just Togthff. This is done to avoid redundancy of data
connections.

effect_of experience_on_productivity = IF experiendilution_switch
THEN (New_Staff*relative_productivity _of new_staffExperienced_Staff)/(New_Staff + Experienced_$taff
ELSE 1 {dimensionless}

Modeling Agile Development 57 © 2007 by K. Chichakl

DOCUMENT: The new staff have lower productivity, are treated as fractional experienced staff. tdte
experienced staff equivalents is divided by thaltstaff to find the fraction of full (experiencegioductivity in
effect.

Note (New_Staff + Experienced_Staff) is just Togthff. This is done to avoid redundancy of data
connections.

effective_productivity = IF total_work_believed_tme_done = 0 OR Cumulative_Person_Months = 0
THEN normal_productivity
ELSE total_work_believed_to_be_done/Cumulative_éterMonths {tasks/person/month}
DOCUMENT: This is the long-term average produdtivi

est_effort_remaining_based_on_progress = IF prdjathed_switch THEN 0 ELSE
weighted_work_left_to_do/effective_productivity €mson-months }

estimated_effort_remaining = IF follow_budget_sWitc
THEN budgeted_effort_remaining*(1 - weight_on_piegg based_estimates) +

est_effort_remaining_based _on_progress*weight_myrpss_based_estimates

ELSE est_effort_remaining_based_on_progress {pensomths}

estimated_productivity = effective_productivity/eét_on_productivity from_available_tasks {tasks/paoson}
DOCUMENT: Divide by effective productivity based tasks remaining to reduce averse effects at €nd o
project cycle.

estimated_rework_fraction = 0.4
DOCUMENT: The estimated total rework that will dene over the course of the project as a fractidgheo
original work.

estimated_work = (1 + estimated_rework_fraction)twdo_do_this_phase {tasks}

excess_experienced_staff = MAX(0, excess_staftesx new_staff) {people}
DOCUMENT: The MAX function isn't strictly necesgatere. It is here to guard against errors elsesvime
the model.

excess_new_staff = MIN(New_Staff, excess_staffofge}

excess_staff = MAX(0, Total_Staff - total_staff ded) {people}

experience_dilution_switch = 1 {dimensionless}
DOCUMENT: Set to one to enable experience dilugéfects (zero to disable).

extra_staff_needed = MAX(0, MIN(total_staff neededximum_staff level) - Effective_Staff) {people}

follow_budget_switch = 1 {dimensionless}
DOCUMENT: Setto 1 to follow project project witegards to staffing. Set to zero to staff basegdrogress
and schedule.

incremental_error_fraction_of_experienced_staff{dithensionless}
DOCUMENT: Fraction of errors generated by the eiqeed staff above the normal error rate. Thik wi
usually be zero because we would just change timaal@rror rate otherwise.

incremental_error_fraction_of new_staff = IF ag#@itch THEN 0.35 ELSE 0.5 {dimensionless}
DOCUMENT: Fraction more errors generated by neaif shan by experienced staff (i.e., new staff erro
fraction/experienced staff error fraction - 1).

Improve by 15% for Agile due to short cycles, seieato jump into a project.

initial_experienced_staff = 4 {people}

initial_new_staff = 0 {people}

initial_scheduled_completion_date = 25 {months}

maximum_staff level = 25 {people}

relative_productivity of new_staff = IF agile_switt HEN 0.65 ELSE 0.5 {dimensionless}
DOCUMENT: New staff productivity as a fraction etperienced staff (i.e., new staff
productivity/experienced staff productivity).

Improve by 15% for Agile due to short cycles, seieato jump into a project.

time_remaining = MAX(1, scheduled_completion_dai@ME) {months}
DOCUMENT: Automatically extend the schedule onenthdf we are not yet done. It is fairly typical t
change the date in these cases and we do not vzant aesult here. Note this is the time left teew we hope
to finish the project.

time_to_gain_experience = 24 {months}

Modeling Agile Development 58 © 2007 by K. Chichakl

DOCUMENT: Time to gain experience overall (shob#lshorter for just this project).
Total_Staff = New_Staff + Experienced_Staff {pedple
total_staff needed = MIN(total_staff needed_basadeffort and_time_remaining,
total_staff needed_based_on_max_work_rate) {people}
total_staff needed_based_on_effort_and_time_renminiestimated_effort_remaining/time_remaining {pled
total_staff needed_based_on_max_work_rate = IFeprdijnished_switch THEN 0 ELSE
maximum_total_work_rate/estimated_productivity {pkg
vary_staff_switch =1
DOCUMENT: Switch to enable staff to vary to makefar schedule delays (set to one to enable aralteer
disable).

This also controls the letting go of people atéhd of a project.
willingness_to_hire =1
DOCUMENT: Varied between zero and one. Zero meamnare not willing to hire anyone no matter what
happens to the schedule (setting it to zero hasahme effect as setting vary_staff _switch to zef@)e means
hire as required to meet the schedule. A valugeiveen allows some hiring to take place. Inchise, it is
treated as the fraction of needed hires we aréngitb hire at any point.
weight_on_progress_based_estimates = GRAPH(fragtienceived_to_be complete {dimensionless})
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0O(D)4, 0.25), (0.5, 0.5), (0.6, 0.75), (0.7, 0(9)8, 1.00), (0.9,
1.00), (1, 1.00)
willingness_to_transfer\fire = GRAPH(adjusted_fiant of total_perceived_complete {dimensionless})
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0,@0)4, 0.00), (0.5, 0.00), (0.6, 0.00), (0.7, O(D)8, 0.5), (0.9,
0.9), (1, 1.00)

Uncertain Requirements
effect_of uncertain_customer_requirements = |FUesn releases
THEN uncertain_requirements_switch*maximum_effe€tuacertain_customer_requirements*(1 -
elimination_of_uncertainty_based_on_progress_freq)
ELSE uncertain_requirements_switch*maximum_effettuncertain_customer_requirements*(1 -
elimination_of_uncertainty _based_on_progress_stihénsionless}
maximum_effect_of _uncertain_customer_requirementskiss THEN 0.15 ELSE 0.2 {dimensionless}
uncertain_requirements_switch = 0 {dimensionless}
DOCUMENT: Setto 1 to enable the effect of undertaistomer requirements on errors (and zero tbtk3.
elimination_of_uncertainty_based_on_progress_fr&RAPH(fraction_perceived_to _be_complete
{dimensionless})
(0.00, 0.495), (0.1, 0.5), (0.2, 0.52), (0.3, 0)548.4, 0.58), (0.5, 0.615), (0.6, 0.675), (0.7,1®), (0.8, 0.895),
(0.9, 0.96), (1, 0.995)
elimination_of _uncertainty_based_on_progress_sBRAPH(fraction_perceived_to_be_complete
{dimensionless})
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0,G0)4, 0.00), (0.5, 0.00), (0.6, 0.1), (0.7, 0(®)8, 0.6), (0.9,
0.85), (1, 1.00)

Work Metrics

effect_on_productivity from_precedence = IF projéicished_switch THEN 1 ELSE
total_work_accomplishment/potential_work_rate {dmei®nless}

maximum_total_work_rate = maximum_work_rate_on_iaaf work + maximum_work_rate_on_rework
{tasks/mo}

potential_work_rate = potential_work rate_on_ordimork + potential_work_rate_on_rework {tasks/mo}

total_work_accomplishment = original_work_accontpiient + rework _accomplishment {tasks/mo}

Modeling Agile Development 59 © 2007 by K. Chichakl

