
Modeling Agile Development: When is it Effective?
Karim Chichakly
isee systems, inc.

31 Old Etna Road, Suite 9N
Lebanon, NH 03766

(603) 448-4990/FAX: (603) 448-4992
kchichakly@iseesys.com

Abstract

It is very difficult to deliver high-quality software (i.e., with very few bugs) in a reasonable time
period. Indeed, it is not unusual on medium to large projects to spend as much time fixing bugs
as delivering new features. One of the most challenging issues in software development is
keeping pace with changing customer requirements.

Agile development was born from the idea that software development needs to be quick on its
feet, responding to changing customer requirements without compromising delivery schedules or
quality. It was founded on the principle of embracing change rather than fighting it. Some of the
fundamental principles of Agile development include frequent customer interaction, frequent
releases, writing tests before code, nightly builds with automated testing, and not implementing
more than you know the customer needs.

Yet there is a surging debate about whether Agile works and when it works. This paper
investigates when Agile development methods may work and the relative advantages of different
parts of the methodology.

Keywords: Agile, Rework Cycle, Software Development, Project Management

Modeling Agile Development 2 © 2007 by K. Chichakly

Overview

This paper explores the implications of the following facets of Agile development:

• Short development cycles, or more specifically, frequent releases – these cycles are
generated by the model

• Using a schedule/quality tradeoff that leads to both undiscovered and discovered rework
moving from one release to the next (in particular, what are the implications of starting a
project with a large amount of undiscovered and discovered rework?)

• Frequent customer interactions
• Frequent reviews between developers
• “Test first” (rather than code first) – before any code is written
• Frequent integrations, nightly builds with automated regression tests
• Availability to customers of frequent stable builds (vs. established and defined betas)
• Having a less predictable set of releases in the field (does not impact this model)
• Being adaptive to regularly changing requirements (hence the name “agile”), including

adapting processes as required
• Main metric is working software vs. tasks completed
• Close face-to-face cooperation and communication
• Continuous attention to technical excellence and good design
• Always choose simple (spec or design) over complicated – it may change!

Software development is notorious for delivering too little too late, often with many bugs. It is
very difficult to deliver high-quality software (i.e., with very few bugs) in a reasonable time
period. Indeed, it is not unusual on medium to large projects to spend as much time fixing bugs
as delivering new features. The reasons for this are many, but the rework cycle we have been
studying gives a lot of insight into the problem.

One of the most challenging issues in software development has been changing customer
requirements. Since software is fungible, most everyone has some idea of how to change it.
Also, it is a documented phenomenon that people cannot adequately visualize how a piece of
software is going to work by walking through examples. As soon as the real thing is there, they
instantly find several things that need to be changed. Prototyping, RAD, and spiral development
have all been things that have been tried to close this gap. Finally, the 90s saw a lot of
companies shifting to a more customer-centric approach given heightened competition and
greater expectations.

Agile was born from the idea that software development needs to be quick on its feet, while at
the same time delivering quality software (in the land of software, change is usually bad because
it means the introduction of lots of new bugs). Indeed, Agile was founded on the principle of
embracing change (it is a fact of life) rather than fighting it.

Yet there is a surging debate about whether Agile works (and when it does). A lot of people feel
it is just a bunch of hooey that someone made up to make some money. Others think it only
works for specific types of people (and that there aren’t that many of them around). Then there

Modeling Agile Development 3 © 2007 by K. Chichakly

are those who are religious zealots about it. Finally, there are people like me who think there are
some good ideas there, but the entire thing as a package is a bit much for most people to use (and
rather unproven).

This paper investigates when Agile methods may work and the relative advantages of different
parts of the methodology.

The Rework Cycle

The dynamics of a project revolves around the rework cycle. The structure below was given to
the author by Jim Lyneis:

Original

Work to Do

Undiscov ered

Rework

Work Done

rework generation
on original work

rework
discov ery

original work done
correctly

error fraction

original work
accomplishment

time to discov er rework

Rework to Do

rework generation

on rework

rework done
correctly

error fraction

rework
accomplishment

Each project begins with a stock of original work to do. As the work is completed, a fraction of
the work is done incorrectly (determined by error fraction). This rework remains undiscovered
for a time. As it is discovered, it is fixed, again generating a fraction of errors. Eventually, all of
the work and rework is completed and the project is finished. Note that rework is not just
restricted to specific bugs that have been introduced in the code, but also includes problems in
the customer requirements and the project design.

Both the error fraction and the time to discover rework play critical roles. If the error fraction is
high, much of the work will need to be redone. If the time to discover rework is very long, the
rework may not be discovered until late in the project cycle, or even worse, after the product has
shipped. Even worse, the error fraction necessarily increases when there are errors in the
system, because the code that new code is being tested against is not producing the correct
results. This is called the “errors on errors feedback” and it is a reinforcing loop (shown below).
It is therefore advantageous to decrease the time to discover rework as much as possible.

Modeling Agile Development 4 © 2007 by K. Chichakly

Undiscov ered
Rework

rework
generation

work believ ed
to be done

f raction work done
containing errors

f raction of undiscov ered
errors incorporated

incremental errors f rom
undiscov ered rework

normal error
f raction error f raction

(R)

+

+

+

+

+ +

In the waterfall paradigm, the entire project is placed in Original Work to Do and the project
progresses until most of the required work is completed. In Agile, however, the project is broken
down into separate phases (four in these simulations). When each phase is completed, based on
a measure of quality of the completed work, Original Work to Do is injected with the work for
the next phase.

Agile Background

The most fundamental precept of Agile is that the code base never stray very far from a
completely working system.1 This is guaranteed with a number of basic principles.

The first is an automated build and test system that runs every single night. This verifies the
code correctly builds on all supported platforms and also regression tests it to make sure nothing
was broken. Errors in the build or the testing are reported via e-mail or RSS feed so everyone
knows right away that something is amiss. Also, when it is successful, an quasi-official build is
available for manual testing (for this is the same system that builds official releases; this is a
critical point: release builds are just nightly builds that meet a certain criteria, so testing is
always being performed on whatever eventually gets shipped).

The second is the concept of “Test first”. This means programmers are responsible for designing
and writing automated tests before they write the actual code that needs to be tested. This serves
many purposes, the most transparent one being it guarantees a body of regression tests (so-called
“unit tests”). More importantly, it forces the programmer to think about the number of ways his
code might break before he writes the code, thus ensuring he writes more robust code. Finally,
as he writes the code, he now has something to test it against (as he goes) rather than just
assuming the thing works.

1 It is possible to have experimental branches of the code that don’t really work, but they should never stray too far
(or too long) from the trunk (main branch).

Modeling Agile Development 5 © 2007 by K. Chichakly

All regression tests must stay current. When a new bug is found that none of the regression tests
uncovered, a new test is added for that specific problem. This ensures the bug will not reappear
in later versions by incorporating what has been learned into the nightly automated tests.

Lastly, customer releases must be frequent, perhaps as often as once a month, to get quick
feedback and to ensure effort is not being spent in an unproductive direction (e.g., an over
specified feature). These short cycles make it very different from other approaches. A
consequence of never straying far from a working system is also that most people applying these
techniques offer intermediate alpha versions to customers at the end of every single week,
shortening the feedback delay even more. Customers are also usually closely involved in
deciding the features that need to be implemented (they get a vote anyway).

All of this leads to a system that is neither schedule-driven nor feature-driven, though both of
these aspects still play important roles. The decision to release is based more on “Is it working?”
by some standard that will be different for a weekly (intermediate) release than for an “official”
release. “Is there something useful to someone?” is the second most important question. It
doesn’t really matter anymore how much is done or exactly what features are there because
another release isn’t far behind (and a less-stable weekly release is even closer behind if the
customer is willing to take the risk).

To clarify the standards, the weekly releases don’t have a very high threshold. Pretty much if it
built and passed all the automated tests, it can be released. The monthly (or bimonthly) release
needs to pass more stringent tests, but even these can be relaxed in the face of the weekly
releases that can patch a problem (and the confidence one gets from automated regression tests).
This means that both discovered rework and undiscovered rework can move from release to
release. Indeed, the fact of trying to meet a monthly target – and that the fact of a periodic
release is more important than what is in it – means that some of the original work will also
move from one release to another.

The combination of automated builds and tests, writing tests first, and frequent releases all lead
to a reduction in the time to discover rework. This reduces the size of undiscovered rework,
which reduces the gain of the errors-on-errors reinforcing loop, thus allowing an Agile project to
complete in advance of an equivalent waterfall project.

Modeling Agile Development 6 © 2007 by K. Chichakly

Base Run

The base run is a consistent schedule, waterfall vs. Agile. The consistent schedule chosen was 5
experienced staff members working on 100 tasks over 29 weeks with an estimated rework
fraction of 0.3. It was expected that Agile would finish close to the waterfall model, perhaps a
little earlier. As can be seen, it finishes a month early while the waterfall model finishes a month
late.

11:00 PM Tue, Nov 28, 2006

1: Waterf all, 2: Agile

Page 2
0.00 10.00 20.00 30.00 40.00

Months

1:

1:

1:

0.0

3.0

6.0

Equiv alent Staf f : 1 - 2 -

1 1

1

1

2
2 2

2

While the Agile project required less work to be done, it cost exactly the same as the Waterfall
project:

11:00 PM Tue, Nov 28, 2006

1: Waterf all, 2: Agile

Page 4
0.00 10.00 20.00 30.00 40.00

Months

1:

1:

1:

0

100

200

Cumulativ e Work Done: 1 - 2 -

1

1

1

1

2

2

2

2

Modeling Agile Development 7 © 2007 by K. Chichakly

11:00 PM Tue, Nov 28, 2006

1: Waterf all, 2: Agile

Page 5
0.00 10.00 20.00 30.00 40.00

Months

1:

1:

1:

0

100

200

Cumulativ e Person Months: 1 - 2 -

1

1

1

1

2

2

2

2

The error fractions and productivities are shown below (the error fraction spikes are just a DT-
length artifact of switching phases). Note they are both lower in the Agile case (as expected –
they are both lower because of the features built into the process to keep quality high). It is also
interesting to note the total rework done in each case (shown last, and again lower in the Agile
case).

11:00 PM Tue, Nov 28, 2006

1: Waterf all, 2: Agile

Page 6
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

-0.05

0.20

0.45

error f raction: 1 - 2 -

1

1

1 1

2

2 2 2

Modeling Agile Development 8 © 2007 by K. Chichakly

11:00 PM Tue, Nov 28, 2006

1: Waterf all, 2: Agile

Page 8
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.20

0.60

1.00

productiv ity : 1 - 2 -

1

1
1 1

2

2

2 2

11:00 PM Tue, Nov 28, 2006

1: Waterf all, 2: Agile

Page 10
0.00 10.00 20.00 30.00 40.00

Months

1:

1:

1:

0

20

40

Cumulativ e Rework Done: 1 - 2 -

1

1

1

1

2

2

2
2

Modeling Agile Development 9 © 2007 by K. Chichakly

Analyses

Inconsistent Project

The obvious first question is how much better (if any) is Agile with an inconsistent case? The
inconsistent case chosen is starting with 4 experienced staff members to finish 100 tasks in 25
weeks. In this situation, Agile finishes in month 27 (2 months late) vs. waterfall’s month 31.
Note the more consistent staffing with the shorter cycles. Also note that required staffing grows
quicker in the Agile case. This is due to the pressure of the shorter phases; we know sooner that
we need more staff members. This earlier feedback alone gives Agile an edge over waterfall.

11:22 AM Wed, Nov 29, 2006

1: Waterf all, 2: Agile

Page 2
0.00 10.00 20.00 30.00 40.00

Months

1:

1:

1:

0.0

7.5

15.0

Equiv alent Staf f : 1 - 2 -

1

1

1

1

2

2 2

2

The lower error fractions in Agile lead to less work being done. This combined with the
significantly earlier finish leads to lower costs.

11:22 AM Wed, Nov 29, 2006

1: Waterf all, 2: Agile

Page 4
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

100

200

Cumulativ e Work Done: 1 - 2 -

1

1

1 1

2

2

2 2

Modeling Agile Development 10 © 2007 by K. Chichakly

11:22 AM Wed, Nov 29, 2006

1: Waterf all, 2: Agile

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

150

300

Cumulativ e Person Months: 1 - 2 -

1

1

1 1

2

2

2 2

Note the fact that we develop the project in phases with minimum quality requirements means
that Undiscovered Rework never grows out of control, so we do not get the large error-on-error
effects we see in the waterfall case.

11:22 AM Wed, Nov 29, 2006

1: Waterf all, 2: Agile

Page 7
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

10

20

Undiscov ered Rework: 1 - 2 -

1

1

1 1

2

2 2 2

Note these benefits are accrued despite having lower productivity due. This is because the focus
on high quality (which causes much of this productivity loss) keeps the error fraction and the
rework generated low.

Modeling Agile Development 11 © 2007 by K. Chichakly

11:22 AM Wed, Nov 29, 2006

1: Waterf all, 2: Agile

Page 8
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.20

0.65

1.10

productiv ity : 1 - 2 -

1

1

1 1

2

2

2 2

11:22 AM Wed, Nov 29, 2006

1: Waterf all, 2: Agile

Page 6
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.00

0.30

0.60

error f raction: 1 - 2 -

1

1

1 1

2

2

2 2

11:22 AM Wed, Nov 29, 2006

1: Waterf all, 2: Agile

Page 11
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

45

90

Total Rework Generated: 1 - 2 -

1

1

1 1

2

2
2 2

Modeling Agile Development 12 © 2007 by K. Chichakly

Inconsistent Project with Uncertain Customer Requirements

In the face of uncertain customer requirements, which Agile was designed to address, Agile
performs even better. Agile still finishes around month 27 (at month 27.8 - 2.8 months late)
while waterfall runs almost out to month 40 (at month 39.8 - 14.8 months late). The cost for
waterfall is almost 50% higher than Agile, while the overall Agile cost has changed very little
from the case without uncertain customer requirements.

11:39 AM Wed, Nov 29, 2006

1: Waterf all, 2: Agile

Page 2
0.00 10.00 20.00 30.00 40.00

Months

1:

1:

1:

0.0

10.0

20.0

Equiv alent Staf f : 1 - 2 -

1
1

1
1

2

2 2

2

11:39 AM Wed, Nov 29, 2006

1: Waterf all, 2: Agile

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

150

300

Cumulativ e Person Months: 1 - 2 -

1

1

1

1

2

2

2 2

Modeling Agile Development 13 © 2007 by K. Chichakly

Summary of Inconsistent Missions

The following tables summarize the two inconsistent mission cases, first without and then with
uncertain customer requirements. Note that Agile development provides a definite advantage to
projects that have an inconsistent mission, finishing 14% earlier at about 75% of the cost.

Project Type
Project
Length (mo)

Delta from
Base (%)

Project Cost
(person-mo)

Delta from
Base (%)

Work Completed
(tasks)

Delta from
Base (%)

Waterfall: 31.25 212.84 183.04
Agile: 26.9375 -13.80 163.82 -23.03 118.68 -35.16

With uncertain customer requirements, Agile really shines, cutting 30% off the project length
(only two months late vs. 15 months late) at around 60% of the cost. Clearly, Agile lives up to
its purpose of resiliency in the face of changing customer requirements.

Project Type
Project
Length (mo)

Delta from
Base (%)

Project Cost
(person-mo)

Delta from
Base (%)

Work Completed
(tasks)

Delta from
Base (%)

Waterfall: 39.75 290.98 258.11
Agile: 27.875 -29.87 178.58 -38.63 127.93 -50.44

Modeling Agile Development 14 © 2007 by K. Chichakly

Analysis of Benefits of Individual Aspects of Agile

Benefits of Frequent Releases and Customer Interactions

For this test, the base case has all Agile effects turned off. This will then be compared to the
same case with only the frequent release effect turned on, both with and without uncertain
customer requirements. The inconsistent mission used previously will be retained as a baseline.

Frequent releases serve to reduce customer uncertainty, as do frequent customer interactions.
This cuts the uncertainty in half, as well as changing the shape of the curve to be more
consistent. The traditional shape for waterfall is shown on the left below while the revised shape
for Agile on the right.

As shown in the following graph, there frequent releases and customer interactions have little to
no effect if there are not changing customer requirements (graphs 1 and 2). However, in the case
of uncertain customer requirements (graphs 3 and 4), there is a marked improvement, finishing
after 41.75 months rather than 50) when there are frequent releases and customer interactions.
Not surprisingly, the cost is also much lower.

Modeling Agile Development 15 © 2007 by K. Chichakly

11:51 AM Wed, Nov 29, 2006

1: Multiphase, 2: w/Releases, 3: Multiphase uncertain, 4: w/Releases

Page 2
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.0

3.5

7.0

Equiv alent Staf f : 1 - 2 - 3 - 4 -

1

1 1

1

2

2

2

2

3
3

3

3

4

4

4

4

11:51 AM Wed, Nov 29, 2006

1: Multiphase, 2: w/Releases, 3: Multiphase uncertain, 4: w/Releases

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

150

300

Cumulativ e Person Months: 1 - 2 - 3 - 4 -

1

1

1
1

2

2

2 2

3

3

3

3

4

4

4 4

Benefits of Nightly Builds and Automated Testing

For this test, the base case has all Agile effects turned off. This will then be compared to the
same case with only the automated testing effect turned on, both with and without uncertain
customer requirements. The inconsistent mission used previously will be retained as a baseline.

Nightly build and automated tests lead directly to a shorter rework discovery delay (reduces the
maximum from 12 months to 12/phases months, where phases is the number of phases in the
project). The maximum time to discovery rework will also be varied to see if the model is
sensitive to its value.

Note that automated testing has a significant effect both without (graphs 1 and 2) and with
(graphs 3 and 4) uncertain customer requirements. In the former case, the project finishes 7.5
months earlier (month 28.7 vs. 36.25), while in the latter case the project finishes 17.5 months

Modeling Agile Development 16 © 2007 by K. Chichakly

earlier (month 32.5 vs. 49.8). Once again the respective costs are much lower, although the work
completed in each case is virtually identical (rework generated is almost the same).

12:01 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/Autotest, 3: Multiphase uncertain, 4: w/Autotest

Page 2
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.0

4.0

8.0

Equiv alent Staf f : 1 - 2 - 3 - 4 -

1

1 1

1

2

2

2 2

3
3

3

3

4

4

4 4

12:01 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/Autotest, 3: Multiphase uncertain, 4: w/Autotest

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

150

300

Cumulativ e Person Months: 1 - 2 - 3 - 4 -

1

1

1
1

2

2

2 2

3

3

3

3

4

4

4 4

To test the sensitivity of the maximum time to discover rework, the base case (curve 1) was
compared against the automated tests case with the original time (curve 3), double the original
time (curve 2) and half the original time (curve 4). It is clear from the progression of the curves
that the model is somewhat sensitive to this value. However, halving it made little difference
(only a one month improvement), while doubling it still provided a significant effect (5 months
better) over the base case. Halving it also led to an excessive ramp-up in the first phase,
suggesting the value might be too small.

Modeling Agile Development 17 © 2007 by K. Chichakly

12:11 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/Autotest double, 3: w/Autotest normal, 4: w/Autotest half

Page 2
0.00 10.00 20.00 30.00 40.00

Months

1:

1:

1:

0.0

3.5

7.0

Equiv alent Staf f : 1 - 2 - 3 - 4 -

1
1

1 1

2

2 2

2

3
3

3

3

4

4

4

4

These changes had little impact on the project cost.

12:11 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/Autotest double, 3: w/Autotest normal, 4: w/Autotest half

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

100

200

Cumulativ e Person Months: 1 - 2 - 3 - 4 -

1

1

1

1

2

2

2 2

3

3

3 3

4

4
4 4

Benefits of “Test First”

For this test, the base case has all Agile effects turned off. This will then be compared to the
same case with only the “test first” effect turned on, both with and without uncertain customer
requirements. The inconsistent mission used previously will be retained as a baseline.

The “test first” effect lowers productivity (and slows initial progress) by 10% as tests are written
instead of shipping code2. It also decreases the normal error fraction by 5%.

2 Note this also could have been implemented by increasing the scope of the project. I felt decreasing the
productivity more accurately represented what actually happens.

Modeling Agile Development 18 © 2007 by K. Chichakly

Note that “test first” gives about a two month improvement in the delivery date in both cases,
though it is slightly less in the face of uncertain customer requirements (curves 3 and 4). The
project cost, however, is higher, especially in the face of uncertain customer requirements –
despite slightly lower total work done due to a lower error fraction. This is because productivity
is lower in “test first” due to the time required to write the tests. The cost is that much higher
when there are changing customer requirements because the project runs longer at the lower
productivity.

12:20 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/Test f irst, 3: Multiphase uncertain, 4: w/Test f irst

Page 2
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.0

4.0

8.0

Equiv alent Staf f : 1 - 2 - 3 - 4 -

1

1 1

1

2

2

2 2

3
3

3

3

4

4
4

4

12:20 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/Test f irst, 3: Multiphase uncertain, 4: w/Test f irst

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

150

300

Cumulativ e Person Months: 1 - 2 - 3 - 4 -

1

1

1
1

2

2

2 2

3

3

3

3

4

4

4

4

Modeling Agile Development 19 © 2007 by K. Chichakly

12:20 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/Test f irst, 3: Multiphase uncertain, 4: w/Test f irst

Page 8
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.10

0.60

1.10

productiv ity : 1 - 2 - 3 - 4 -

1
1 1

1

2

2

2 2

3

3

3

3

4

4

4
4

12:20 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/Test f irst, 3: Multiphase uncertain, 4: w/Test f irst

Page 4
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

100

200

Cumulativ e Work Done: 1 - 2 - 3 - 4 -

1

1

1

1

2

2

2 2

3

3

3

3

4

4

4

4

Benefits of Design and Code Reviews

For this test, the base case has all Agile effects turned off. This will then be compared to the
same case with only the reviews effect turned on, both with and without uncertain customer
requirements. The inconsistent mission used previously will be retained as a baseline.

Frequent reviews between developers, including pair programming (which I think most people
can only tolerate in very short doses) and face-to-face communication, leads to both a lower
normal error fraction and a lower productivity (5% reduction on both). Continuous attention to
technical excellence and design may also lower productivity somewhat, but definitely lowers
error fraction. It has been assumed that the 5% reduction already given for reviews sufficiently
covers this effect as well.

Note that having design and code reviews improves the project schedule by about three months
in both cases at about the same cost. There is a modest cost savings (about 4%) without

Modeling Agile Development 20 © 2007 by K. Chichakly

customer changes (curves 1 and 2). These are tied to proportionally lower levels of rework
generation (because of a lower error rate), and hence, total work done.

1:09 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/Rev iews, 3: Multiphase uncertain, 4: w/Rev iews

Page 2
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.0

3.5

7.0

Equiv alent Staf f : 1 - 2 - 3 - 4 -

1

1 1

1

2

2

2 2

3
3

3

3

4

4

4

4

1:09 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/Rev iews, 3: Multiphase uncertain, 4: w/Rev iews

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

150

300

Cumulativ e Person Months: 1 - 2 - 3 - 4 -

1

1

1
1

2

2

2 2

3

3

3

3

4

4

4

4

Modeling Agile Development 21 © 2007 by K. Chichakly

1:09 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/Rev iews, 3: Multiphase uncertain, 4: w/Rev iews

Page 11
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

35

70

Total Rework Generated: 1 - 2 - 3 - 4 -

1

1

1
1

2

2

2 2

3

3

3

3

4

4

4

4

Benefits of Keeping Things Simple

For this test, the base case has all Agile effects turned off. This will then be compared to the
same case with only the KISS effect turned on, both with and without uncertain customer
requirements. The inconsistent mission used previously will be retained as a baseline.

Choosing simple over complicated both reduces error fraction and the effect of rework for
uncertain customer requirements (because you haven’t yet developed everything that the
customer may be changing). Rather than reducing the error fraction, I decided it made more
sense to reduce the strength of the errors on errors effect because that is where complexity is
likely to cause the worst trouble (reduce by 10%). The uncertain customer requirements effect
was also reduced another 5%.

Note that choosing simpler solutions has a minor impact (1 month - curves 1 and 2) on both the
schedule and the cost when customer requirements are not changing and a dramatic impact (6.5
months - curves 3 and 4) when they are. These changes are directly tied to the amount of rework
generated. The improvements can be clearly seen in the graphs of incremental errors from
undiscovered rework (which includes discovered rework as well) and error fraction.

Modeling Agile Development 22 © 2007 by K. Chichakly

1:18 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/KISS, 3: Multiphase uncertain, 4: w/KISS

Page 2
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.0

3.5

7.0

Equiv alent Staf f : 1 - 2 - 3 - 4 -

1

1 1

1

2

2

2

2

3
3

3

3

4

4

4

4

1:18 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/KISS, 3: Multiphase uncertain, 4: w/KISS

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

150

300

Cumulativ e Person Months: 1 - 2 - 3 - 4 -

1

1

1
1

2

2

2 2

3

3

3

3

4

4

4 4

1:18 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/KISS, 3: Multiphase uncertain, 4: w/KISS

Page 11
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

35

70

Total Rework Generated: 1 - 2 - 3 - 4 -

1

1

1
1

2

2

2 2

3

3

3

3

4

4

4 4

Modeling Agile Development 23 © 2007 by K. Chichakly

1:18 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/KISS, 3: Multiphase uncertain, 4: w/KISS

Page 9
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.00

0.25

0.50

incremental errors f rom undiscov ered rework: 1 - 2 - 3 - 4 -

1

1

1
1

2

2 2 2

3

3
3

3

4

4
4

4

1:18 PM Wed, Nov 29, 2006

1: Multiphase, 2: w/KISS, 3: Multiphase uncertain, 4: w/KISS

Page 6
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.05

0.40

0.75

error f raction: 1 - 2 - 3 - 4 -

1

1

1

1

2

2

2 2

3

3

3

3

4

4

4

4

Summary of Individual Effects

The above results are summarized in the following two tables. The first shows the results
without uncertain customer requirements, while the second shows the results with uncertain
customer requirements. As can be seen from the table below, frequent releases have no impact
when there are not changing customer requirements. On the other hand, nightly builds and
automated tests give a tremendous advantage in terms of both time and cost. “Test first” gives a
modest gain in schedule at a modest cost. The remaining two effects show modest advantages in
both time and cost.

Modeling Agile Development 24 © 2007 by K. Chichakly

Agile feature
(known reqs)

Project
Length (mo)

Delta from
Base (%)

Project Cost
(person-mo)

Delta from
Base (%)

Work Completed
(tasks)

Delta from
Base (%)

Base (none): 36.375 178.33 135.35

Frequent release: 36.375 0.00 178.33 0.00 135.35 0.00

Nightly builds/test: 28.6875 -21.13 155.13 -13.01 133.64 -1.26

"Test First": 34.125 -6.19 186.42 4.54 128.70 -4.91

Design/Code reviews: 33.4375 -8.08 170.68 -4.29 127.01 -6.16

KISS: 35.1875 -3.26 171.12 -4.04 132.51 -2.10

The story is a little different when there are changing customer requirements. Frequent releases,
nightly builds, and avoiding complexity have strong schedule and cost gains while reviews have
modest schedule gains with no difference in cost. “Test First” has a smaller impact than in the
previous case at a higher cost.

Does this then mean that the doctrine of “test first” should be abandoned? Unfortunately, the
automated tests that run with nightly builds (yielding a very strong benefit in both time and cost)
depend on the automated tests being written. Whether they are written first or last does not
directly affect the productivity, though writing them last tends to increase the error fraction,
worsening the results shown in the table. In other words, to reap the benefits of nightly
automated tests, the tests must be written and it is better to write them first rather than last. This
is not a potential practice to drop.

Agile feature
(uncertain reqs)

Project
Length (mo)

Delta from
Base (%)

Project Cost
(person-mo)

Delta from
Base (%)

Work Completed
(tasks)

Delta from
Base (%)

Base (none): 49.875 263.66 167.57

Frequent release: 41.625 -16.54 210.61 -20.12 148.83 -11.18

Nightly builds/test: 32.5625 -34.71 203.54 -22.80 167.83 0.16

"Test First": 48 -3.76 288.53 9.43 162.74 -2.88

Design/Code reviews: 47.0625 -5.64 263.10 -0.21 160.86 -4.00

KISS: 43.25 -13.28 219.12 -16.89 153.16 -8.60

Agile Without Frequent Releases

One of the burning questions is whether these process improvements still work without frequent
official releases. Since Agile assumes that you are always working in small releasable chunks,
even if you don’t actually release the product, should this aspect be retained in the comparison?
This is hard to answer equivocally because there will be differences between projects in the
amount of customer interaction and releases to the customer. These tests have been run
assuming these remain the same as for the waterfall case.

Without uncertain customer requirements, there is no difference between frequent releases (curve
3) and not having frequent releases (curve 2). [The waterfall case is included for comparison in
curve 1.]

Modeling Agile Development 25 © 2007 by K. Chichakly

1:32 PM Wed, Nov 29, 2006

1: Waterf all, 2: Agile no releases, 3: Agile w/releases

Page 2
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.0

10.0

20.0

Equiv alent Staf f : 1 - 2 - 3 -

1

1

1 1

2
2

2 2

3 3

3 3

However, when there are uncertain customer requirements, there is an improvement in the
schedule (1.5 months) by having frequent releases and customer interaction. In addition, there is
a cost savings. This isn’t a big surprise because frequent releases showed an improvement on
their own.

1:35 PM Wed, Nov 29, 2006

1: Waterf all, 2: Agile no releases, 3: Agile w/releases

Page 2
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.0

10.0

20.0

Equiv alent Staf f : 1 - 2 - 3 -

1

1

1

1

2 2

2 2

3
3

3 3

Modeling Agile Development 26 © 2007 by K. Chichakly

1:35 PM Wed, Nov 29, 2006

1: Waterf all, 2: Agile no releases, 3: Agile w/releases

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

150

300

Cumulativ e Person Months: 1 - 2 - 3 -

1

1

1

1

2

2

2 2

3

3

3 3

These results are summarized in the tables below. The first table shows the results without
changing customer requirements. Not surprisingly (since we already saw frequent releases have
no impact in this case), failing to have frequent releases and customer interactions has no impact.

Project Type
Project
Length (mo)

Delta from
Base (%)

Project Cost
(person-mo)

Delta from
Base (%)

Work Completed
(tasks)

Delta from
Base (%)

Waterfall: 31.25 212.84 183.04
Agile: 26.9375 -13.80 163.82 -23.03 118.68 -35.16
Agile no rels: 26.9375 -13.80 163.82 -23.03 118.68 -35.16

However, with changing customer requirements, there is a noticeable difference. Failure to have
frequent releases increases the project length 5% (1.5 months) and the cost 12%. Note there is
also more work to accomplish (11%). This is from additional rework that must be done due to
increased Undiscovered Rework from changing customer requirements. This also leads to a
higher error fraction due to the errors-on-errors feedback, causing even more rework.

Project Type
Project
Length (mo)

Delta from
Base (%)

Project Cost
(person-mo)

Delta from
Base (%)

Work Completed
(tasks)

Delta from
Base (%)

Waterfall: 39.75 290.98 258.11
Agile: 27.875 -29.87 178.58 -38.63 127.93 -50.44
Agile no rels: 29.3125 -26.26 199.77 -31.35 141.46 -45.19
Cost of no rels: 5.16 11.87 10.58

Modeling Agile Development 27 © 2007 by K. Chichakly

Sensitivity of Assumptions

A number of assumptions have been made about how well Agile performs in terms of error
fraction and productivity. What if the error fraction improvements in Agile aren’t as high as
suggested (or the waterfall error fraction is lower)? What if the price of Agile is even higher in
terms of productivity? This will very likely be true in the early stages of adoption. Additionally,
what if these changes also have a relative impact on new staff members (or maybe we were too
optimistic originally)? Using the inconsistent mission, the following series of tests look at a
progressive worsening of these parameters, as shown in the table below. Note the relative
impact of new staff members in Agile is never worse than the waterfall case, which seems
reasonable.

Case
number

normal
error

fraction
Normal

productivity

incr.
errors:

new staff
productivity:

new staff

Waterfall:
1 0.15 1.00 0.50 0.50

Agile:
2 0.05 0.85 0.35 0.65
3 0.08 0.80 0.40 0.60
4 0.11 0.75 0.45 0.55
5 0.15 0.70 0.50 0.50
6 0.18 0.65 0.50 0.50

The following curves show the staffing behavior, cost, and work done for the six cases. Note
that while most of the Agile cases finish before, or close to, the waterfall case, all but two of the
Agile cases are more expensive than the waterfall case. This is despite the fact that all of the
Agile cases accomplish less work (fewer tasks) over the course of the project.

Note also how the first phase of most of the Agile cases over-staffs in an attempt to finish on
time. Some of this staff is subsequently let go in the second phase.

9:55 PM Sun, Dec 10, 2006

1: Waterf all, 2-6: Agile

Page 2
0.00 10.00 20.00 30.00 40.00

Months

1:

1:

1:

0.0

10.0

20.0

Equiv alent Staf f : 1 - 2 - 3 - 4 - 5 - 6 -

Modeling Agile Development 28 © 2007 by K. Chichakly

9:55 PM Sun, Dec 10, 2006

1: Waterf all, 2-6: Agile

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

200

400

Cumulativ e Person Months: 1 - 2 - 3 - 4 - 5 - 6 -

9:55 PM Sun, Dec 10, 2006

1: Waterf all, 2-6: Agile

Page 4
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

100

200

Cumulativ e Work Done: 1 - 2 - 3 - 4 - 5 - 6 -

The higher Agile costs are easily explained by the productivity curves. Productivity in Agile is
considerably below the waterfall case across the entire project.

Modeling Agile Development 29 © 2007 by K. Chichakly

9:55 PM Sun, Dec 10, 2006

1: Waterf all, 2-6: Agile

Page 8
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.05

0.55

1.05

productiv ity : 1 - 2 - 3 - 4 - 5 - 6 -

Finally, the total work accomplished is lower in all Agile cases because the rework generated is
lower than in the waterfall case.

9:55 PM Sun, Dec 10, 2006

1: Waterf all, 2-6: Agile

Page 11
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

45

90

Total Rework Generated: 1 - 2 - 3 - 4 - 5 - 6 -

This is, of course, directly tied to lower error fractions in the Agile case across the entire project
(shown below). Lower error fractions also mean a lower errors-on-errors effect. The bump in
the first phase of each Agile case is caused by ramping up the staff at the beginning.

There is something of a paradox here, though. How can the error fraction remain lower than the
waterfall case when the last two cases (five and six) set the Agile error fraction equal to and then
greater than the waterfall case? This is because incremental errors from undiscovered rework
stays smaller due to a slightly smaller effect in the Agile case, a shorter rework discovery delay,
and the clearing out of Undiscovered Rework at the end of each phase.

Modeling Agile Development 30 © 2007 by K. Chichakly

9:55 PM Sun, Dec 10, 2006

1: Waterf all, 2-6: Agile

Page 6
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.00

0.30

0.60

error f raction: 1 - 2 - 3 - 4 - 5 - 6 -

9:55 PM Sun, Dec 10, 2006

1: Waterf all, 2-6: Agile

Page 9
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.00

0.20

0.40

incremental errors f rom undiscov ered rework: 1 - 2 - 3 - 4 - 5 - 6 -

9:55 PM Sun, Dec 10, 2006

1: Waterf all, 2-6: Agile

Page 7
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

10

20

Undiscov ered Rework: 1 - 2 - 3 - 4 - 5 - 6 -

Modeling Agile Development 31 © 2007 by K. Chichakly

These results are summarized in the table below. Note that all of these tests were done with
uncertain customer requirements turned off. It is clear from the table that Agile roughly breaks
even with waterfall (4% earlier at 9% higher cost) when Agile has a slightly better error fraction
(and much worse productivity). When the error fraction reaches parity with waterfall, the project
takes longer and costs quite a bit more. Further degradation leads to much higher costs. As
stated earlier, these last two cases are more likely when the methodology is first adopted, giving
the classic worse-before-better behavior.

There is no question that Agile will normally give some improvement in error fraction over
waterfall and it is hard to believe that productivity will be much worse than the 75% given in that
middle case (4). Therefore, conservatively, under normal circumstances with an inconsistent
mission, we expect Agile to be no later than waterfall, with about a 10% increase in cost. If we
are able to improve productivity somewhat while lowering error fraction even more (case 3),
Agile can beat the waterfall schedule with no additional cost. This is, of course, assuming the
maximum rework discovery delay has been reduced. Although changes to this parameter have a
relatively small impact on the Agile case, the small difference is enough to tip the balance back
to waterfall.

Case
number

normal error
fraction

normal
productivity

incr. errors:
new staff

productivity:
new staff

Project
Length
(mo)

Delta
from
Base
(%)

Project
Cost
(person-
mo)

Delta
from
Base
(%)

Work
Completed
(tasks)

Delta
from
Base
(%)

 Waterfall:

1 0.15 1.00 0.50 0.50 31.25 212.84 183.04

 Agile:

2 0.05 0.85 0.35 0.65 26.9375 -13.80 163.82 -23.03 118.68 -35.16

3 0.08 0.80 0.40 0.60 28.375 -9.20 193.49 -9.09 127.40 -30.40

4 0.11 0.75 0.45 0.55 29.9375 -4.20 231.85 8.93 137.10 -25.10

5 0.15 0.70 0.50 0.50 31.8125 1.80 286.12 34.43 149.68 -18.23

6 0.18 0.65 0.50 0.50 32.875 5.20 333.64 56.76 157.95 -13.71

With uncertain customer requirements, Agile wins out in everything except cost in the last two
cases (shown below – graphs follow). This is, of course, the case that Agile was born to handle.
Note that even in case 5, when the error fraction is the same as in the waterfall case (but the
productivity is much lower), Agile finishes almost 20% ahead of the waterfall case with only a
6% increase in project cost. Also take a moment to compare the project lengths with those
above. Observe that uncertain customer requirements pushed every Agile case back by less than
a month. Compare this to the 8.5 month difference in the waterfall case. Clearly, this is where
Agile shines.

Modeling Agile Development 32 © 2007 by K. Chichakly

Case
number

normal error
fraction

normal
productivity

incr.
errors:

new staff
productivity:
new staff

Project
Length
(mo)

Delta
from
Base
(%)

Project
Cost
(person-
mo)

Delta
from
Base
(%)

Work
Completed
(tasks)

Delta
from
Base
(%)

 Waterfall:

1 0.15 1.00 0.50 0.50 39.75 290.98 258.11

 Agile:

2 0.05 0.85 0.35 0.65 27.875 -29.87 178.58 -38.63 127.93 -50.44

3 0.08 0.80 0.40 0.60 29.3125 -26.26 210.22 -27.75 136.79 -47.00

4 0.11 0.75 0.45 0.55 30.875 -22.33 251.28 -13.64 146.55 -43.22

5 0.15 0.70 0.50 0.50 32.5625 -18.08 308.14 5.90 159.10 -38.36

6 0.18 0.65 0.50 0.50 33.75 -15.09 359.85 23.67 167.53 -35.09

11:06 PM Sun, Dec 10, 2006

Uncertain Customer Reqs - 1: Waterf all, 2-6: Agile

Page 2
0.00 10.00 20.00 30.00 40.00

Months

1:

1:

1:

0.0

10.0

20.0

Equiv alent Staf f : 1 - 2 - 3 - 4 - 5 - 6 -

11:06 PM Sun, Dec 10, 2006

Uncertain Customer Reqs - 1: Waterf all, 2-6: Agile

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

200

400

Cumulativ e Person Months: 1 - 2 - 3 - 4 - 5 - 6 -

Modeling Agile Development 33 © 2007 by K. Chichakly

11:06 PM Sun, Dec 10, 2006

Uncertain Customer Reqs - 1: Waterf all, 2-6: Agile

Page 4
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

150

300

Cumulativ e Work Done: 1 - 2 - 3 - 4 - 5 - 6 -

11:06 PM Sun, Dec 10, 2006

Uncertain Customer Reqs - 1: Waterf all, 2-6: Agile

Page 6
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.05

0.40

0.75

error f raction: 1 - 2 - 3 - 4 - 5 - 6 -

These results lead to an interesting question when there is an inconsistent schedule, but there are
not uncertain customer requirements: If we can cut the rework discovery delay in half in the
waterfall case, and also double the rework discovery delay in Agile (so they are actually the
same), will the waterfall model give similar results? Doing so, leads to the following behavior:

Modeling Agile Development 34 © 2007 by K. Chichakly

9:27 AM Mon, Dec 11, 2006

1: Waterf all, 2: Waterf all half discov ery , 3: Agile, 4: Agile double discov ery

Page 2
0.00 10.00 20.00 30.00 40.00

Months

1:

1:

1:

0.0

10.0

20.0

Equiv alent Staf f : 1 - 2 - 3 - 4 -

1
1

1

1

2
2

2

2

3
3

3

3

4 4

4

4

The original cases are shown in curves 1 and 3, while the curves with the same rework discovery
delays are shown on curves 2 and 4 (red and green). Note there is much less of an advantage to
Agile (about a month) which could be lost to other factors, such as a slightly higher error fraction
or a slightly lower productivity. Agile’s costs, though, remain lower (25% lower) because there
is still less rework due to lower error fractions and removing (almost) all rework before moving
to the next phase.

9:27 AM Mon, Dec 11, 2006

1: Waterf all, 2: Waterf all half discov ery , 3: Agile, 4: Agile double discov ery

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

150

300

Cumulativ e Person Months: 1 - 2 - 3 - 4 -

1

1

1 1

2

2

2 2

3

3

3 3

4

4
4 4

Finally, under these same circumstances, does Agile still have an advantage if the error fraction
is increased while the waterfall error fraction is decreased, so they are equal (0.1)? The results
clearly show that it still does have this advantage, finishing 2 months earlier with a 10% cost
saving. This advantage is caused by a lower error fraction due to consistently lower levels of
Undiscovered Rework. These consistently lower levels are, as mentioned earlier, due to both a
short rework discovery delay and the fact that the Undiscovered Rework is not allowed to grow
across the length of the project (it is cleared out each phase).

Modeling Agile Development 35 © 2007 by K. Chichakly

10:32 AM Mon, Dec 11, 2006

1: Waterf all, 2: Waterf all lower error, 3: Agile, 4: Agile higher error

Page 2
0.00 10.00 20.00 30.00 40.00

Months

1:

1:

1:

0.0

10.0

20.0

Equiv alent Staf f : 1 - 2 - 3 - 4 -

1
1

1

1

2
2

2

2

3
3

3

3

4 4

4

4

10:32 AM Mon, Dec 11, 2006

1: Waterf all, 2: Waterf all lower error, 3: Agile, 4: Agile higher error

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

150

300

Cumulativ e Person Months: 1 - 2 - 3 - 4 -

1

1

1 1

2

2

2 2

3

3

3 3

4

4
4 4

10:32 AM Mon, Dec 11, 2006

1: Waterf all, 2: Waterf all lower error, 3: Agile, 4: Agile higher error

Page 6
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.00

0.30

0.60

error f raction: 1 - 2 - 3 - 4 -

1

1

1 1

2

2

2
2

3

3

3 3

4

4
4 4

Modeling Agile Development 36 © 2007 by K. Chichakly

10:32 AM Mon, Dec 11, 2006

1: Waterf all, 2: Waterf all lower error, 3: Agile, 4: Agile higher error

Page 7
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

10

20

Undiscov ered Rework: 1 - 2 - 3 - 4 -

1

1

1 1

2

2

2 23
3

3 3

4
4

4 4

10:32 AM Mon, Dec 11, 2006

1: Waterf all, 2: Waterf all lower error, 3: Agile, 4: Agile higher error

Page 9
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.00

0.20

0.40

incremental errors f rom undiscov ered rework: 1 - 2 - 3 - 4 -

1

1

1 1

2

2

2 2
3 3

3 3

4

4 4 4

Modeling Agile Development 37 © 2007 by K. Chichakly

Additional Performance Issues

There remain two questions regarding the performance of Agile:

• Can the performance be improved by prioritizing rework over original work?
• Will performance get worse if one phase’s rework isn’t completed before moving onto

the next phase (something that we saw was disastrous for the waterfall model)?

Surprisingly, prioritizing rework over original work makes little difference to the Agile case as
the rework is already being done relatively quickly (very close to as you go). The four cases
[certain customer requirements: base (1) and prioritized (2), uncertain customer requirements:
base (3) and prioritized (3)] are shown below. Note that there is no noticeable difference in the
project length or cost in any of the cases, though the incremental errors from rework are slightly
higher in the non-prioritized cases.

5:21 PM Mon, Dec 11, 2006

1: Agile, 2: w/prior rework, 3: Agile uncertain, 4: w/prior rework

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

100

200

Cumulativ e Person Months: 1 - 2 - 3 - 4 -

1

1

1 1

2

2

2 2

3

3

3 3

4

4
4 4

5:21 PM Mon, Dec 11, 2006

1: Agile, 2: w/prior rework, 3: Agile uncertain, 4: w/prior rework

Page 9
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.00

0.15

0.30

incremental errors f rom undiscov ered rework: 1 - 2 - 3 - 4 -

1

1
1 1

2

2 2 2

3

3
3 3

4

4
4 4

Modeling Agile Development 38 © 2007 by K. Chichakly

Note that there is a slight advantage to doing this in the waterfall case, bringing the project in one
month sooner at a lower cost with uncertain customer requirements.

5:35 PM Mon, Dec 11, 2006

1: Waterf all, 2: w/prior rework, 3: Waterf all uncertain, 4: w/prior rework

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

150

300

Cumulativ e Person Months: 1 - 2 - 3 - 4 -

1

1

1 1

2

2

2 2

3

3

3
3

4

4

4 4

In this case, the incremental errors effect is also noticeably lower when fixing rework has top
priority.

5:35 PM Mon, Dec 11, 2006

1: Agile, 2: w/prior rework, 3: Agile uncertain, 4: w/prior rework

Page 9
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.00

0.30

0.60

incremental errors f rom undiscov ered rework: 1 - 2 - 3 - 4 -

1

1

1 1

2

2

2 2

3

3

3
3

4

4

4 4

With regards to the second question, there is no change in performance if the release quality
threshold is lowered because original work is constraining the end of the phase in the base case.
However, if the model is changed to give priority to original work and the quality threshold is
lowered from 0.99 to 0.9 (i.e., the end of phase threshold for Rework To Do is raised from 0.01
of original work to 0.1 of original work), there are some very surprising results. The project
actually finishes almost two months sooner! In the following graphs, the first curve (blue) is the
base case with uncertain customer requirements, the second curve (red) is the same case with
priority given to original work, and the final curve (magenta) lowers the quality threshold.

Modeling Agile Development 39 © 2007 by K. Chichakly

6:15 PM Mon, Dec 11, 2006

1: Agile uncertain, 2: w/orig prior, 3: w/lower quality

Page 2
0.00 10.00 20.00 30.00 40.00

Months

1:

1:

1:

0.0

5.0

10.0

Equiv alent Staf f : 1 - 2 - 3 -

1

1 1

1

2

2
2

2

3

3

3

3

As expected, the error fraction is higher due to a additional backlog of Undiscovered Rework and
Rework to Do (as well as that bump of new hires, which also brings productivity down some).

6:15 PM Mon, Dec 11, 2006

1: Agile uncertain, 2: w/orig prior, 3: w/lower quality

Page 6
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.05

0.30

0.55

error f raction: 1 - 2 - 3 -

1

1

1 1

2

2

2 2

3

3
3 3

Modeling Agile Development 40 © 2007 by K. Chichakly

6:15 PM Mon, Dec 11, 2006

1: Agile uncertain, 2: w/orig prior, 3: w/lower quality

Page 7
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

3

5

Undiscov ered Rework: 1 - 2 - 3 -

1
1

1 1

2

2

2 2

3

3

3 3

The explanation for the earlier finish comes from precedence effects on productivity. Because
original work is being given priority and assigned at the highest possible level, there are no
precedence effects on original work. Any precedence effects on rework are caused by idle time
while waiting for more rework to be discovered. As shown in curve 2 below (original work
priority), the initial high quality standard causes productivity delays at the end of each phase.
However, in the third curve, the next phase is started before the rework in the current phase is
completed (or even completely discovered). Therefore, the delays in discovering rework do not
occur (and precedence constraints do not apply) until the end of the project when there is still the
desire to deliver a final quality product. Note in this last case that the precedence effects on
productivity stay at one until the very end of the project. The additional (and consistent)
productivity is what causes the project to finish earlier than the base case.

Note there is considerably more rework generated in this case, but the cost is only marginally
higher (4% - due to the better productivity on average and the early finish).

6:33 PM Mon, Dec 11, 2006

1: Agile uncertain, 2: w/orig prior, 3: w/lower quality

Page 12
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.15

0.60

1.05

ef f ect on productiv ity f rom precedence: 1 - 2 - 3 -

1 1 1 12 2 2 23 3 3 3

Modeling Agile Development 41 © 2007 by K. Chichakly

6:33 PM Mon, Dec 11, 2006

1: Agile uncertain, 2: w/orig prior, 3: w/lower quality

Page 11
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

20

40

Total Rework Generated: 1 - 2 - 3 -

1

1

1 1

2

2

2 2

3

3
3 3

6:33 PM Mon, Dec 11, 2006

1: Agile uncertain, 2: w/orig prior, 3: w/lower quality

Page 5
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

100

200

Cumulativ e Person Months: 1 - 2 - 3 -

1

1

1 1

2

2

2 2

3

3

3 3

This model does not explore the corporate level issues of reducing quality this much. I do not
believe the small time savings to be worth the risk at 90% quality. Sensitivity tests below,
though, show the benefits saturate at the 92% level and a substantial benefit at the 98% level
(about a month) with no change in cost. This small reduction in quality between phases is
probably acceptable for many projects.

Modeling Agile Development 42 © 2007 by K. Chichakly

8:54 PM Mon, Dec 11, 2006

Quality - 1: Base - 99%, 2: 98%, 3: 95%, 4: 92%

Page 2
0.00 7.50 15.00 22.50 30.00

Months

1:

1:

1:

0.0

4.0

8.0

Equiv alent Staf f : 1 - 2 - 3 - 4 -

1

1 1

1

2

2 2

2

3

3 3

3

4

4

4

4

8:54 PM Mon, Dec 11, 2006

Quality - 1: Base - 99%, 2: 98%, 3: 95%, 4: 92%

Page 12
0.00 7.50 15.00 22.50 30.00

Months

1:

1:

1:

0.20

0.60

1.00

ef f ect on productiv ity f rom precedence: 1 - 2 - 3 - 4 -

1 1 1 12 2 2

2

3 3

3

34 4 4 4

The graph of rework generated below gives an idea of the overall impact on errors-on-errors of
the various quality levels. The incremental errors from rework are shown after that. Note that
all levels of quality have the same errors-on-errors effect in the first phase. This is a
consequence of the change to giving priority to original work. In subsequent phases, though,
higher quality leads to lower incremental errors.

Modeling Agile Development 43 © 2007 by K. Chichakly

8:54 PM Mon, Dec 11, 2006

Quality - 1: Base - 99%, 2: 98%, 3: 95%, 4: 92%

Page 11
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0

15

30

Total Rework Generated: 1 - 2 - 3 - 4 -

1

1

1 1

2

2

2 2

3

3 3 3

4

4 4 4

8:54 PM Mon, Dec 11, 2006

Quality - 1: Base - 99%, 2: 98%, 3: 95%, 4: 92%

Page 9
0.00 7.50 15.00 22.50 30.00

Months

1:

1:

1:

0.00

0.12

0.24

incremental errors f rom undiscov ered rework: 1 - 2 - 3 - 4 -

1

1 1 1

2

2

2

2

3

3

3
3

4

4

4
4

It is interesting to note that giving original work priority in the waterfall case is extremely
deleterious to the project’s completion (shown below – curve one is the waterfall base case with
uncertain requirements, curve two gives priority to original work, and curve three gives priority
to rework). Note also that giving priority to rework does not help as much as might have been
anticipated (the no priority algorithm in place tends to already favor rework a bit).

Modeling Agile Development 44 © 2007 by K. Chichakly

9:08 PM Mon, Dec 11, 2006

1: Waterf all uncertain, 2: w/orig prior, 3: w/rework prior

Page 2
0.00 12.50 25.00 37.50 50.00

Months

1:

1:

1:

0.0

10.0

20.0

Equiv alent Staf f : 1 - 2 - 3 -

1

1

1

1

2

2
2

2

3

3
3

3

9:14 PM Mon, Dec 11, 2006

1: Waterf all uncertain, 2: w/orig prior, 3: w/rework prior

Page 9
0.00 15.00 30.00 45.00 60.00

Months

1:

1:

1:

0.00

0.35

0.70

incremental errors f rom undiscov ered rework: 1 - 2 - 3 -

1
1

1

1

2
2

2

2

3

3

3 3

Modeling Agile Development 45 © 2007 by K. Chichakly

Summary

In summary, Agile methods do not appear to make a difference with a consistent mission. Both
the finish time and the cost are approximately the same despite the lower normal productivity in
Agile. This, of course, means that if there is a danger of not being able to control these
parameters, or if there is reason to believe the Agile parameters are worse than used in this
model, that managers should stick to the waterfall model for consistent missions. Additional
support for this course of action can be found in the cost of switching (there isn’t any benefit to
switch and it will be worse before it is back to the same again, so why do it?).

When there is an inconsistent mission, Agile methods can win out over waterfall methods –
again, assuming you have already adopted the methodology and fought your way through the
worse-before-better startup transition. There are, however, cases where even this may be risky.
As shown in the table in the middle of page 27, if your organization’s error fraction and
productivity under Agile fall just a little short of the values used in this model, Agile will begin
to cost more. It also very quickly begins to cost a lot more.

Finally, when there is both an inconsistent mission and uncertain customer requirements, Agile is
pretty much guaranteed to meet or beat the waterfall method, which was its main goal when it
was developed. As shown in the table at the bottom of page 27, your organization’s parameters
under Agile have to be the same or worse than those for waterfall in order to turn out worse in
either cost or project length. This is not likely except under the initial transition of switching to
Agile.

In conclusion, the ideas behind Agile do indeed help projects come in earlier when there are
changing customer requirements. The combination of frequent releases to, and interactions with,
customers, nightly builds and automated tests, writing tests before code, and avoiding
unnecessary complexity all work together to allow the project to adapt more easily to changing
conditions.

References

Beck, K, et. al. 2001. Manifesto for Agile Software Development,

http://www.agilemanifesto.org
Cockburn, A. 2004. Crystal Clear: A Human-Powered Methodology for Small Teams. Addison-

Wesley: Boston, MA.
Lyneis JM. 2006. Project Dynamics. Lecture notes, Worcester Polytechnic Institute: Worcester,

MA

Modeling Agile Development 46 © 2007 by K. Chichakly

Appendix: Model Structure

Original
Work to Do

Undiscov ered

Rework

Work Done

rework generation
on original work

rework
discov ery

original work done
correctly

error fraction

max work rate based

on original work

maximum work rate
on original work

original work

accomplishment
av erage task

duration

precedence
switch

maximum work rate
based on tasks

av ailable

tasks av ailable

to work on

total tasks that could
be worked on

f raction of tasks
av ailable to work on

giv en progress

f raction perceiv ed
to be complete

productiv ity

time to discov er rework

maximum time to
discov er rework

minimum time to

discov er rework

ef f ect of work progress

f raction really

complete

work believ ed

to be done

work believed
to be done

project f inished
switch

potential work rate
on original workef f ect on productiv ity

f rom av ailable tasks

initial work to do
new work to do

this phase

project finished
switch

productivity before
precedence effects

effect of overtime
on productivity

Rework to Do

rework generation

on rework

rework done
correctly

error fraction

Staff on
Original Work

rework
accomplishment

phases

adding work

shipping product

start new phase

start new phase

agile switch

Undiscovered
Rework

Prev ious Work Done

total work believ ed
to be done

work to do
this phase

work to do
this phase

automated tests

Rework Cy cle

Modeling Agile Development 47 © 2007 by K. Chichakly

initial new staf f

initial scheduled

completion date

time remaining

scheduled

completion date

weighted work

left to do

ef f ectiv e

productiv ity

Cumulativ e

Person Months

doing work

New Staf f

hiring

v ary staf f switch

total staf f needed

based on ef f ort and
time remaining

extra staf f needed

maximum staf f lev el total staf f needed

av erage time

to hire

normal

productivity

excess staf f

total work believed
to be done

project finished
switch

weight on progress
based estimates

est ef f ort remaining

based on progress

estimated ef f ort
remaining

initial experienced staf f

Experienced Staf f

gaining experience

time to gain
experience

staf f leav ing

new staf f leav ing

Total Staf f

excess new staf f

vary staff switch

excess experienced staf f

av erage time
to transf er\f ire

Total Staff

willingness to hire

ef f ect of experience

on productiv ity

relativ e productiv ity
of new staf f

ef f ect of experience
on error f raction

incremental error f raction

of new staf f

project finished
switch

total staf f needed

based on max work rate

estimated

productiv ity

experience dilution
switch

New Staff

budgeted ef f ort
remaining

fraction perceived

to be complete

estimated

work

estimated
rework

f raction

willingness to
transf er\f ire

effect on productivity

from available tasks

incremental error f raction

of experienced staf f

f ollow budget
switch

work to do
this phase

Effective Staff

maximum total

work rate

start new phase
initial scheduled

completion

change schedule

phases

adjusted fraction of
total perceived complete

agile switch

Staf f Adjustment

Modeling Agile Development 48 © 2007 by K. Chichakly

rework
accomplishment

Equiv alent Staf f

Staf f on
Original Work

weighted work
lef t to do

Total Staff

relative effort
required for rework

productivity before
precedence effects

minimum time to
perf orm rework

maximum work
rate on rework

Rework to Do

f raction of ef f ort
to rework

maximum work rate
on original work

relativ e ef f ort
required f or rework

productiv ity
on rework

total work
accomplishment

Staf f on Rework

project finished
switch

potential work
rate on rework

maximum work
rate on rework

maximum work rate
on original work

maximum total
work rate

potential
work rate

potential work
rate on rework

potential work rate
on original work

ef f ect on productiv ity
f rom precedence

original work
accomplishment

rework
accomplishment

project finished
switch

Original
Work to Do

rework priority

productivity before
precedence effects

no priority
original work priority

Rework Calculations

Work Metrics

Cumulativ e

Work Done

rate of doing work

rework generation

on original work

original work done
correctly

rework done
correctly

rework generation
on rework

Total Rework
Generated

generating rework

Cumulativ e

Rework Done

reworking

Cumulativ e Metrics

Modeling Agile Development 49 © 2007 by K. Chichakly

Undiscov ered Rework
This Phase

work to do
this phase

f raction of total
perceiv ed complete

phases

new work to do
this phase

agile switch

start new phase

adjusted f raction of

total perceiv ed complete

Original
Work to Do

Rework to Do

fraction perceived
to be complete

initial work to do

Initial
Undiscov ered Rework

change initial
undiscov ered rework

Undiscovered
Rework

Latent Work in Sy stem
change latent work

project finished
switch

total work believed
to be done

test f irst switch

f requent release switch

rev iews switch

kiss switch

agile switch

test f irst

f requent releases

rev iews

kiss

automated test switchautomated tests

Phase Bookkeeping

f raction work done
containing errors

f raction of undiscov ered
errors incorporated

incremental errors f rom
undiscov ered rework

normal error
f raction

error f raction

sensitiv ity of
incremental errors

to past errors

Undiscovered
Rework

errors on
errors switch

effect of schedule
pressure on error fraction

effect of experience
on error fraction

maximum error
f raction

ef f ect of uncertain
customer requirements

maximum ef f ect of
uncertain customer

requirements

elimination of
uncertainty based

on progress std

fraction perceived
to be complete

effect of uncertain
customer requirements

uncertain
requirements

switch

effect of overtime

on error fraction
Rework to Do

frequent releases

elimination of
uncertainty based
on progress f req

kiss

Errors on Errors

Uncertain Requirements

Modeling Agile Development 50 © 2007 by K. Chichakly

normal

productiv ity

overtime switch

indicated completion date
based on progress

Equivalent Staff

perceiv ed
completion date

time to perceiv e

real schedule

anticipated
schedule ov errun

scheduled
completion date

project finished
switch

ef f ect of schedule pressure

on productiv ity relation

ef f ect of schedule pressure
on error f raction relation

ef f ect of schedule
pressure on productiv ity

sensitiv ity f or ef f ect
of schedule pressure

on productiv ity

ef f ect of schedule
pressure on error f raction

sensitiv ity f or ef f ect
of schedule pressure

on error f raction

productiv ity bef ore

precedence ef f ects

schedule pressure

switch

effect of experience
on productivity

estimated effort
remaining

perceived
completion date

scheduled
completion date

willingness
to slip

allow schedule slip

fraction perceived

to be complete
schedule

slip switch

Imputed Project Cost

increasing
imputed cost

imputed cost per
month of ov errun

project finished
switch

Total Project
Cost

Cumulative
Person Months

overtime switch

initial scheduled
completion

initial scheduled
completion

agile switch

agile switch

start new phase

started new phase

test first

reviews

Schedule Pressure Schedule Slip

maximum ov ertime
allowed

indicated ov ertime

ov ertime delay

ov ertime f raction

total staff needed Total Staff

Ef f ectiv e Staf f

ov ertime switch
ef f ect of ov ertime
on error f raction

relation

ef f ect of ov ertime
on productiv ity

relation

maximum ef f ect
of ov ertime on
error f raction

maximum ef f ect
of ov ertime on

productiv ity

ef f ect of ov ertime
on error f raction

ef f ect of ov ertime
on productiv ity

f atiguetime to dev elop
f atigue

ef f ect of f atigue

on error f raction
relation

ef f ect of f atigue
on productiv ity

relation

maximum ef f ect
of f atigue on
error f raction

maximum ef f ect

of f atigue on
productiv ity

ef f ect of f atigue
on productiv ity

ef f ect of f atigue
on error f raction

Ov ertime

Cumulative Metrics
Cumulative_Rework_Done(t) = Cumulative_Rework_Done(t - dt) + (reworking) * dt
INIT Cumulative_Rework_Done = 0 {tasks}
INFLOWS:
reworking = rework_done_correctly + rework_generation_on_rework {tasks/mo}

Modeling Agile Development 51 © 2007 by K. Chichakly

Cumulative_Work_Done(t) = Cumulative_Work_Done(t - dt) + (rate_of_doing_work) * dt
INIT Cumulative_Work_Done = 0 {tasks}
INFLOWS:
rate_of_doing_work = original_work_done_correctly + rework_generation_on_original_work +

rework_done_correctly + rework_generation_on_rework {tasks/mo}

Total_Rework_Generated(t) = Total_Rework_Generated(t - dt) + (generating_rework) * dt
INIT Total_Rework_Generated = 0 {tasks}
INFLOWS:
generating_rework = rework_generation_on_original_work + rework_generation_on_rework {tasks/mo}

Errors on Errors
error_fraction = maximum_error_fraction - ((maximum_error_fraction - normal_error_fraction)*(1 -

incremental_errors_from_undiscovered_rework*errors_on_errors_switch)*(1 -
effect_of_schedule_pressure_on_error_fraction)*(1 - effect_of_experience_on_error_fraction)*(1 -
effect_of_uncertain_customer_requirements)*(1 - effect_of_overtime_on_error_fraction)) {dimensionless}

errors_on_errors_switch = 1{dimensionless}
DOCUMENT: Set to 1 to enable the errors on errors feedback loop. Otherwise, set to zero.

fraction_work_done_containing_errors = IF (total_work_believed_to_be_done = 0 OR project_finished_switch)
THEN 0
ELSE (Rework_to_Do + Undiscovered_Rework)/total_work_believed_to_be_done {dimensionless}

incremental_errors_from_undiscovered_rework = (1 -
normal_error_fraction)*fraction_of_undiscovered_errors_incorporated*
sensitivity_of_incremental_errors_to_past_errors {dimensionless}

maximum_error_fraction = 1 {dimensionless}
normal_error_fraction = IF test_first AND reviews THEN 0.05

ELSE IF test_first OR reviews THEN 0.10
ELSE 0.15 {dimensionless}

sensitivity_of_incremental_errors_to_past_errors = IF kiss THEN 0.8 ELSE 0.9 {dimensionless}
DOCUMENT: Used to scale graphical function "fraction of undiscovered errors incorporated". Normally set
to one for no scaling (range is zero to one).

Decrease sensitivity when including discovered rework in calculation so it is comparable to numbers when
didn't separate discovered rework out.

fraction_of_undiscovered_errors_incorporated = GRAPH(fraction_work_done_containing_errors {dimensionless})
(0.00, 0.00), (0.1, 0.1), (0.2, 0.2), (0.3, 0.3), (0.4, 0.4), (0.5, 0.5), (0.6, 0.6), (0.7, 0.7), (0.8, 0.8),
(0.9, 0.9), (1, 1.00)

Overtime
effect_of_fatigue_on_error_fraction =

maximum_effect_of_fatigue_on_error_fraction*effect_of_fatigue_on_error_fraction_relation {dimensionless}
effect_of_fatigue_on_productivity =

maximum_effect_of_fatigue_on_productivity*effect_of_fatigue_on_productivity_relation {dimensionless}
effect_of_overtime_on_error_fraction =

maximum_effect_of_overtime_on_error_fraction*effect_of_overtime_on_error_fraction_relation +
effect_of_fatigue_on_error_fraction {dimensionless}
DOCUMENT: The fatigue effect from overtime is added in here to create an aggregate effect of overtime.

effect_of_overtime_on_productivity = 1 +
maximum_effect__of_overtime_on_productivity*effect_of_overtime_on_productivity_relation +
effect_of_fatigue_on_productivity {dimensionless}
DOCUMENT: The (negative) fatigue effect from overtime is added in here to create an aggregate effect from
overtime. This technically should affect "productivity before effects", but this relies on a subordinate
calculation from this (total staff needed).

Effective_Staff = (1 + overtime_fraction)*Total_Staff {people}
DOCUMENT: Effective number of full-time people working on the project (FTEs).

Modeling Agile Development 52 © 2007 by K. Chichakly

fatigue = SMTH3(overtime_fraction, time_to_develop_fatigue) {dimensionless}
indicated_overtime = IF (Total_Staff <> 0)

THEN MIN(MAX(total_staff_needed - Total_Staff, 0)/Total_Staff, maximum_overtime_allowed)
ELSE 0 {dimensionless}

maximum_effect__of_overtime_on_productivity = 0.5 {dimensionless}
maximum_effect_of_fatigue_on_error_fraction = 0.5 {dimensionless}
maximum_effect_of_fatigue_on_productivity = 0.5 {dimensionless}
maximum_effect_of_overtime_on_error_fraction = 0.3 {dimensionless}
maximum_overtime_allowed = 0.5 {dimensionless}

DOCUMENT: Largest fraction of overtime allowed by management.
overtime_delay = 1 {months}

DOCUMENT: This is short because the reaction to overtime pressure is usually pretty quick.
overtime_fraction = overtime_switch*SMTH3(indicated_overtime, overtime_delay) {dimensionless}
overtime_switch = 0 {dimensionless}

DOCUMENT: Set to one to enable overtime and zero to disable it.
time_to_develop_fatigue = 6 {months}
effect_of_fatigue_on_error_fraction_relation = GRAPH(fatigue {dimensionless})

(0.00, 0.00), (0.1, 0.02), (0.2, 0.04), (0.3, 0.075), (0.4, 0.12), (0.5, 0.195), (0.6, 0.275), (0.7, 0.365), (0.8, 0.5),
(0.9, 0.72), (1, 1.00)

effect_of_fatigue_on_productivity_relation = GRAPH(fatigue {dimensionless})
(0.00, 0.00), (0.1, -0.01), (0.2, -0.035), (0.3, -0.06), (0.4, -0.105), (0.5, -0.155), (0.6, -0.22),
(0.7, -0.31), (0.8, -0.415), (0.9, -0.61), (1, -1.00)

effect_of_overtime_on_error_fraction_relation = GRAPH(overtime_fraction {dimensionless})
(0.00, 0.00), (0.1, 0.02), (0.2, 0.04), (0.3, 0.075), (0.4, 0.13), (0.5, 0.2), (0.6, 0.295), (0.7, 0.41),
(0.8, 0.56), (0.9, 0.775), (1, 1.00)

effect_of_overtime_on_productivity_relation = GRAPH(overtime_fraction {dimensionless})
(0.00, 0.00), (0.1, 0.1), (0.2, 0.2), (0.3, 0.3), (0.4, 0.4), (0.5, 0.5), (0.6, 0.6), (0.7, 0.7), (0.8, 0.8),
(0.9, 0.9), (1, 1.00)
DOCUMENT: This is assumed a linear effect. Of course, it won't be, but fatigue will handle this.

Phase Bookkeeping
Initial_Undiscovered_Rework(t) = Initial_Undiscovered_Rework(t - dt) + (change_initial_undiscovered_rework) *

dt
INIT Initial_Undiscovered_Rework = 0 {tasks}
INFLOWS:
change_initial_undiscovered_rework = IF start_new_phase THEN (Undiscovered_Rework -

Initial_Undiscovered_Rework)/DT ELSE 0 {tasks/mo}

Latent_Work_in_System(t) = Latent_Work_in_System(t - dt) + (change_latent_work) * dt
INIT Latent_Work_in_System = 0 {tasks}
INFLOWS:
change_latent_work = IF start_new_phase THEN (Original_Work_to_Do + Rework_to_Do +

Undiscovered_Rework - Latent_Work_in_System)/DT ELSE 0 {tasks/mo}

adjusted_fraction_of_total_perceived_complete = IF (agile_switch AND fraction_of_total_perceived_complete +

1/phases < 1)
THEN (1 - fraction_perceived_to_be_complete) {release excess staff at start of each phase}
ELSE fraction_of_total_perceived_complete
DOCUMENT: Don't let fraction complete exceed 50% until in last phase during agile (otherwise, we let staff
go between phases).

agile_switch = 1 {dimensionless}
DOCUMENT: Set to 1 to enable Agile tests (zero for conventional waterfall).

automated_test_switch = 1 {dimensionless}
DOCUMENT: Set to zero to disabled nightly builds and automated testing (Agile only).

automated_tests = agile_switch AND automated_test_switch {dimensionless}
fraction_of_total_perceived_complete = total_work_believed_to_be_done/initial_work_to_do {dimensionless}

Modeling Agile Development 53 © 2007 by K. Chichakly

frequent_release_switch = 1 {dimensionless}
DOCUMENT: Set to zero to turn off the effects of frequent releases and customer interactions (Agile and
uncertain customer requirements only).

frequent_releases = agile_switch AND frequent_release_switch {dimensionless}
kiss = agile_switch AND kiss_switch {dimensionless}
kiss_switch = 1 {dimensionless}

DOCUMENT: Set to zero to disable the KISS (Keep It Simple Stupid) effects in agile.
new_work_to_do_this_phase = initial_work_to_do/phases {tasks}
phases = IF agile_switch THEN 4 ELSE 1 {dimensionless}
reviews = agile_switch AND reviews_switch {dimensionless}
reviews_switch = 1 {dimensionless}

DOCUMENT: Set to zero to disable the effects of design and code reviews, as well as pair programming and
commitment to technical and design excellence (Agile only).

start_new_phase = agile_switch AND (NOT project_finished_switch) AND fraction_of_total_perceived_complete <
0.95 AND Original_Work_to_Do < 0.04*work_to_do_this_phase AND Rework_to_Do <
.01*work_to_do_this_phase {dimensionless}
DOCUMENT: We start a new phase if we haven't finished (and aren't close to finishing - within 5%) and we've
finished a significant amount of the original work (at least 96% - numbers down to 90% have little additional
effect) and have met a given standard of quality (less than 1% errors).

test_first = agile_switch AND test_first_switch {dimensionless}
test_first_switch = 1 {dimensionless}

DOCUMENT: Set to zero in Agile to turn off "test first".
Undiscovered_Rework_This_Phase = MAX(0, Undiscovered_Rework - Initial_Undiscovered_Rework) {tasks}
work_to_do_this_phase = new_work_to_do_this_phase + Latent_Work_in_System {tasks}

DOCUMENT: All work that must be done this phase (including things we don't know about, such as
undiscovered rework). Note that most of this is known (Undiscovered Rework is marginal), so we use this even
in policy decisions that should only be based on things we know. If we run cases where Undiscovered Rework
becomes larger (unlikely), we will need to separate out another variable for these policies (estimated_work and
start_new_phase).

Rework Calculations
Equivalent_Staff = IF project_finished_switch THEN 0 ELSE Total_Staff {people}
fraction_of_effort_to_rework = MIN(1,

maximum_work_rate_on_rework*relative_effort_required_for_rework/(MAX(0.001,
maximum_work_rate_on_rework*relative_effort_required_for_rework +
maximum_work_rate_on_original_work))) {dimensionless}

maximum_work_rate_on_rework = Rework_to_Do/minimum_time_to_perform_rework {tasks/mo}
minimum_time_to_perform_rework = 0.25 {months}
no_priority = 1 {dimensionless}

DOCUMENT: Set to one to have no priority, i.e., do work as best we can as it comes in (other two priorities
must be zero).

original_work_priority = 0 {dimensionless}
DOCUMENT: Set to one to give original work priority (other two priorities must be zero).

potential_work_rate_on_rework = productivity_on_rework*Staff_on_Rework {tasks/mo}
productivity_on_rework = productivity_before_precedence_effects/relative_effort_required_for_rework

{tasks/mo/person}
relative_effort_required_for_rework = 1 {dimensionless}

DOCUMENT: This is the effort required to fix problems relative to original work. A value of 1 means the
effort is the same. A value of 0.5 means it takes half the effort while a value of 2 means it takes twice the effort.

rework_accomplishment = MIN(potential_work_rate_on_rework, maximum_work_rate_on_rework) {tasks/mo}
rework_priority = 0 {dimensionless}

DOCUMENT: Set to one to give rework priority (other two priorities must be zero).
Staff_on_Original_Work = Equivalent_Staff - Staff_on_Rework {people}
Staff_on_Rework = no_priority*fraction_of_effort_to_rework*Equivalent_Staff +

rework_priority*MIN(maximum_work_rate_on_rework/productivity_on_rework, Equivalent_Staff) +

Modeling Agile Development 54 © 2007 by K. Chichakly

original_work_priority*MAX(Equivalent_Staff - maximum_work_rate_on_original_work/
productivity_before_precedence_effects, 0) {people}

weighted_work_left_to_do = Original_Work_to_Do + relative_effort_required_for_rework*Rework_to_Do {tasks}

Rework Cycle
Original_Work_to_Do(t) = Original_Work_to_Do(t - dt) + (adding_work - rework_generation_on_original_work -

original_work_done_correctly) * dt
INIT Original_Work_to_Do = new_work_to_do_this_phase {tasks}
INFLOWS:
adding_work = IF start_new_phase THEN (new_work_to_do_this_phase)/DT ELSE 0 {tasks/mo}
OUTFLOWS:
rework_generation_on_original_work = error_fraction*original_work_accomplishment {tasks/mo}
original_work_done_correctly = (1 - error_fraction)*original_work_accomplishment {tasks/mo}

Previous_Work_Done(t) = Previous_Work_Done(t - dt) + (shipping_product) * dt
INIT Previous_Work_Done = 0 {tasks}
INFLOWS:
shipping_product = IF (start_new_phase OR project_finished_switch) THEN Work_Done/DT ELSE 0 {tasks/mo}

Rework_to_Do(t) = Rework_to_Do(t - dt) + (rework_discovery - rework_generation_on_rework -

rework_done_correctly) * dt
INIT Rework_to_Do = 0 {tasks}
INFLOWS:
rework_discovery = Undiscovered_Rework/time_to_discover_rework {tasks/mo}
OUTFLOWS:
rework_generation_on_rework = error_fraction*rework_accomplishment {tasks/mo}
rework_done_correctly = (1 - error_fraction)*rework_accomplishment {tasks/mo}

Undiscovered_Rework(t) = Undiscovered_Rework(t - dt) + (rework_generation_on_original_work +

rework_generation_on_rework - rework_discovery) * dt
INIT Undiscovered_Rework = 0 {tasks}
INFLOWS:
rework_generation_on_original_work = error_fraction*original_work_accomplishment {tasks/mo}
rework_generation_on_rework = error_fraction*rework_accomplishment {tasks/mo}
OUTFLOWS:
rework_discovery = Undiscovered_Rework/time_to_discover_rework {tasks/mo}

Work_Done(t) = Work_Done(t - dt) + (original_work_done_correctly + rework_done_correctly - shipping_product)

* dt
INIT Work_Done = 0 {tasks}
INFLOWS:
original_work_done_correctly = (1 - error_fraction)*original_work_accomplishment {tasks/mo}
rework_done_correctly = (1 - error_fraction)*rework_accomplishment {tasks/mo}
OUTFLOWS:
shipping_product = IF (start_new_phase OR project_finished_switch) THEN Work_Done/DT ELSE 0 {tasks/mo}

average_task_duration = 1 {mo}
effect_on_productivity_from_available_tasks = IF (project_finished_switch OR

potential_work_rate_on_original_work = 0) THEN 1 ELSE MIN(1,
maximum_work_rate_on_original_work/potential_work_rate_on_original_work) {dimensionless}

fraction_perceived_to_be_complete = work_believed_to_be_done/work_to_do_this_phase {dimensionless}
fraction_really_complete = Work_Done/work_to_do_this_phase {dimensionless}
initial_work_to_do = 100 {tasks}
max_work_rate_based_on_original_work = Original_Work_to_Do/average_task_duration {tasks/mo}
maximum_time_to_discover_rework = IF automated_tests THEN 12/phases ELSE 12 {mo}

Modeling Agile Development 55 © 2007 by K. Chichakly

DOCUMENT: Although it is true there may be rework that shows up later than specified here, if we do not
divide the rework discovery between the phases, we cannot reasonably compare projects completed in one
phase to projects completed in a number of phases. It therefore behooves shorter projects to take steps to ensure
that the rework discovery delay is shortened (which Agile does, so we are safe). Project that don't can be
modeled by removing the division (the result is disaastrous when the rework delay is larger than the scheduled
project).

NOTE: Added automated tests switch to control including division or not.

maximum_work_rate_based_on_tasks_available = tasks_available_to_work_on/average_task_duration {tasks/mo}
maximum_work_rate_on_original_work = IF precedence_switch

THEN maximum_work_rate_based_on_tasks_available
ELSE max_work_rate_based_on_original_work {tasks/mo}

minimum_time_to_discover_rework = 0.25 {mo}
original_work_accomplishment = productivity*Staff_on_Original_Work {tasks/mo}
potential_work_rate_on_original_work = productivity_before_precedence_effects*Staff_on_Original_Work

{tasks/mo}
precedence_switch = 1 {dimensionless}
productivity = productivity_before_precedence_effects*effect_on_productivity_from_available_tasks*

effect_of_overtime_on_productivity { tasks/mo/person }
project_finished_switch = IF Work_Done + Previous_Work_Done >= initial_work_to_do - 0.4 {epsilon} THEN 1

ELSE 0 {dimensionless}
tasks_available_to_work_on = MAX(total_tasks_that_could_be_worked_on - work_believed_to_be_done -

Rework_to_Do, 0) {tasks}
time_to_discover_rework = effect_of_work_progress*maximum_time_to_discover_rework + (1 -

effect_of_work_progress)*minimum_time_to_discover_rework {mo}
total_tasks_that_could_be_worked_on = MIN(1, fraction_of_tasks_available_to_work_on_given_progress +

agile_switch*0.12)*work_to_do_this_phase {tasks}
DOCUMENT: We have to bump up task fraction by 0.12 in Agile or we would have no tasks to work on. This
may seem arbitrary, but with a smaller scope there are probably fewer interdependencies (meaning it could
probably be bumped up even more). However, care must be taken on an Agile project to reduce the number of
dependencies as too many will severely limit the number of people on the project (relative to a traditional
project).

total_work_believed_to_be_done = Previous_Work_Done + Work_Done + Undiscovered_Rework {tasks}
work_believed_to_be_done = Work_Done + Undiscovered_Rework {tasks}
effect_of_work_progress = GRAPH(fraction_really_complete {dimensionless})

(0.00, 1.00), (0.1, 1.00), (0.2, 0.95), (0.3, 0.85), (0.4, 0.75), (0.5, 0.6), (0.6, 0.4), (0.7, 0.25), (0.8, 0.15), (0.9,
0.05), (1, 0.00)

fraction_of_tasks_available_to_work_on_given_progress = GRAPH(fraction_perceived_to_be_complete
{dimensionless})
(0.00, 0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.4), (0.4, 0.5), (0.5, 0.6), (0.6, 0.7), (0.7, 0.8), (0.8, 0.9),
(0.9, 1.00), (1, 1.00)

Schedule Pressure
anticipated_schedule_overrun = IF project_finished_switch THEN 0 ELSE (perceived_completion_date -

scheduled_completion_date)/MAX(17.5, scheduled_completion_date) {dimensionless}
DOCUMENT: We never divide by less than 17.5 because for short projects (e.g., the first phase of a multi-
phase project), schedule pressure is too severe because of the very early due date (differences as a fraction of
the actual due date are very large).

effect_of_schedule_pressure_on_error_fraction = IF schedule_pressure_switch
THEN sensitivity_for_effect_of_schedule_pressure_on_error_fraction*
effect_of_schedule_pressure_on_error_fraction_relation + (1 -
sensitivity_for_effect_of_schedule_pressure_on_error_fraction) - 1
ELSE 0 {dimensionless}

effect_of_schedule_pressure_on_productivity = IF schedule_pressure_switch

Modeling Agile Development 56 © 2007 by K. Chichakly

THEN sensitivity_for_effect_of_schedule_pressure_on_productivity*
effect_of_schedule_pressure_on_productivity_relation + (1 -
sensitivity_for_effect_of_schedule_pressure_on_productivity)
ELSE 1 {dimensionless}

indicated_completion_date_based_on_progress = IF Equivalent_Staff <> 0 THEN TIME +
estimated_effort_remaining/Equivalent_Staff ELSE TIME {months}

normal_productivity = IF test_first AND reviews THEN 0.85
ELSE IF test_first THEN 0.9
ELSE IF reviews THEN 0.95
ELSE 1 {tasks/mo/person}

perceived_completion_date = SMTH1(indicated_completion_date_based_on_progress,
time_to_perceive_real_schedule, initial_scheduled_completion) {months}

productivity_before_precedence_effects = normal_productivity*effect_of_schedule_pressure_on_productivity*
effect_of_experience_on_productivity{tasks/mo/person}

schedule_pressure_switch = 1 {dimensionless}
DOCUMENT: Switch to enable schedule pressures on productivity to make up for schedule delays (set to one
to enable and zero to disable).

sensitivity_for_effect_of_schedule_pressure_on_error_fraction = IF overtime_switch THEN 0.5 ELSE IF
agile_switch THEN 0.75 ELSE 1 {dimensionless}
DOCUMENT: Reduce schedule pressure effect if implementing overtime or Agile (give overtime precedence).

sensitivity_for_effect_of_schedule_pressure_on_productivity = IF overtime_switch THEN 0.5 ELSE IF
agile_switch THEN 0.75 ELSE 1 {dimensionless}
DOCUMENT: Reduce schedule pressure effect if implementing overtime or Agile (give overtime precedence).

started_new_phase = DELAY(start_new_phase, DT) {dimensionless}
DOCUMENT: Pulses in the first DT of the new phase (vs. start_new_phase which pulses in the last DT of the
previous phase).

time_to_perceive_real_schedule = IF started_new_phase THEN DT ELSE 1 {months}
DOCUMENT: At the start of each phase, the delay is reset to DT to reinitialize the smooth for this phase. Note
that this only works because it is a SMTH1 (a SMTH3 would require 3*DT to reset) and that it introduces an
artifactual 1 DT delay in the response of schedule pressure (in that one DT, pressure will essentially be
removed). DT is small enough that we do not have to worry about this.

effect_of_schedule_pressure_on_error_fraction_relation = GRAPH(anticipated_schedule_overrun {dimensionless})
(-0.2, 0.85), (-0.1, 0.97), (-2.78e-017, 1.00), (0.1, 1.03), (0.2, 1.08), (0.3, 1.17), (0.4, 1.25), (0.5, 1.34), (0.6,
1.39), (0.7, 1.40)

effect_of_schedule_pressure_on_productivity_relation = GRAPH(anticipated_schedule_overrun {dimensionless})
(-0.2, 0.85), (-0.1, 0.97), (-2.78e-017, 1.00), (0.1, 1.03), (0.2, 1.08), (0.3, 1.17), (0.4, 1.25), (0.5, 1.34), (0.6,
1.39), (0.7, 1.40)

Schedule Slip
Imputed_Project_Cost(t) = Imputed_Project_Cost(t - dt) + (increasing_imputed_cost) * dt
INIT Imputed_Project_Cost = 0 {person-mo}
INFLOWS:
increasing_imputed_cost = IF (TIME < initial_scheduled_completion) OR project_finished_switch

THEN 0
ELSE imputed_cost_per_month_of_overrun {person-months/month}

imputed_cost_per_month_of_overrun = 10 {person-months/month}
schedule_slip_switch = 0 {dimensionless}

DOCUMENT: Set to 1 to enable schedule slipping (zero to disable).
scheduled_completion_date = initial_scheduled_completion + (perceived_completion_date -

initial_scheduled_completion)*willingness_to_slip*allow_schedule_slip*schedule_slip_switch {months}
Total_Project_Cost = Cumulative_Person_Months + Imputed_Project_Cost {person-months}
willingness_to_slip = 1 {dimensionless}

DOCUMENT: Ranges from zero to one. One means slip completely, zero means slip not at all.
allow_schedule_slip = GRAPH(fraction_perceived_to_be_complete {dimensionless})

Modeling Agile Development 57 © 2007 by K. Chichakly

(0.00, 1.00), (0.1, 1.00), (0.2, 1.00), (0.3, 1.00), (0.4, 1.00), (0.5, 1.00), (0.6, 1.00), (0.7, 1.00),
(0.8, 1.00), (0.9, 1.00), (1, 1.00)
DOCUMENT: Controls period over which it is okay to slip project (allows there to be schedule pressure in the
beginning of the project).

Staff Adjustment
Cumulative_Person_Months(t) = Cumulative_Person_Months(t - dt) + (doing_work) * dt
INIT Cumulative_Person_Months = 0 {person-months}
INFLOWS:
doing_work = IF project_finished_switch THEN 0 ELSE Effective_Staff {person-months/month}

Experienced_Staff(t) = Experienced_Staff(t - dt) + (gaining_experience - staff_leaving) * dt
INIT Experienced_Staff = initial_experienced_staff {people}
INFLOWS:
gaining_experience = New_Staff/time_to_gain_experience
OUTFLOWS:
staff_leaving = IF vary_staff_switch THEN

willingness_to_transfer\fire*excess_experienced_staff/average_time_to_transfer\fire ELSE 0 {people/mo}
DOCUMENT: We remove inexperienced staff before experienced staff.

initial_scheduled_completion(t) = initial_scheduled_completion(t - dt) + (change_schedule) * dt
INIT initial_scheduled_completion = initial_scheduled_completion_date/phases {months}
INFLOWS:
change_schedule = IF start_new_phase THEN (TIME + initial_scheduled_completion_date/phases -

initial_scheduled_completion)/DT ELSE 0 {months/mo}

New_Staff(t) = New_Staff(t - dt) + (hiring - gaining_experience - new_staff_leaving) * dt
INIT New_Staff = initial_new_staff {people}
INFLOWS:
hiring = IF vary_staff_switch

THEN willingness_to_hire*extra_staff_needed/average_time_to_hire
ELSE 0 {people}
DOCUMENT: Note we could also add staff by reallocation, but here assume hiring is the worst case.

OUTFLOWS:
gaining_experience = New_Staff/time_to_gain_experience
new_staff_leaving = IF vary_staff_switch THEN

willingness_to_transfer\fire*excess_new_staff/average_time_to_transfer\fire ELSE 0 {people/mo}

average_time_to_hire = 4
average_time_to_transfer\fire = 1 {month}

DOCUMENT: Reallocation is usually fairly quick.
budgeted_effort_remaining = (estimated_work/normal_productivity)*(1 - fraction_perceived_to_be_complete)

{person-months}
effect_of_experience_on_error_fraction = IF experience_dilution_switch

THEN (New_Staff*incremental_error_fraction_of_new_staff +
Experienced_Staff*incremental_error_fraction_of_experienced_staff)/(New_Staff + Experienced_Staff)

ELSE 0 {dimensionless}
DOCUMENT: The incremental error fraction based on additional new staff (where fraction is between zero
and one).

Note (New_Staff + Experienced_Staff) is just Total_Staff. This is done to avoid redundancy of data
connections.

effect_of_experience_on_productivity = IF experience_dilution_switch
THEN (New_Staff*relative_productivity_of_new_staff + Experienced_Staff)/(New_Staff + Experienced_Staff)
ELSE 1 {dimensionless}

Modeling Agile Development 58 © 2007 by K. Chichakly

DOCUMENT: The new staff have lower productivity, so are treated as fractional experienced staff. The total
experienced staff equivalents is divided by the total staff to find the fraction of full (experienced) productivity in
effect.

Note (New_Staff + Experienced_Staff) is just Total_Staff. This is done to avoid redundancy of data
connections.

effective_productivity = IF total_work_believed_to_be_done = 0 OR Cumulative_Person_Months = 0
THEN normal_productivity
ELSE total_work_believed_to_be_done/Cumulative_Person_Months {tasks/person/month}
DOCUMENT: This is the long-term average productivity.

est_effort_remaining_based_on_progress = IF project_finished_switch THEN 0 ELSE
weighted_work_left_to_do/effective_productivity { person-months }

estimated_effort_remaining = IF follow_budget_switch
THEN budgeted_effort_remaining*(1 - weight_on_progress_based_estimates) +

est_effort_remaining_based_on_progress*weight_on_progress_based_estimates
ELSE est_effort_remaining_based_on_progress {person-months}

estimated_productivity = effective_productivity/effect_on_productivity_from_available_tasks {tasks/mo/person}
DOCUMENT: Divide by effective productivity based on tasks remaining to reduce averse effects at end of
project cycle.

estimated_rework_fraction = 0.4
DOCUMENT: The estimated total rework that will be done over the course of the project as a fraction of the
original work.

estimated_work = (1 + estimated_rework_fraction)*work_to_do_this_phase {tasks}
excess_experienced_staff = MAX(0, excess_staff - excess_new_staff) {people}

DOCUMENT: The MAX function isn't strictly necessary here. It is here to guard against errors elsewhere in
the model.

excess_new_staff = MIN(New_Staff, excess_staff) {people}
excess_staff = MAX(0, Total_Staff - total_staff_needed) {people}
experience_dilution_switch = 1 {dimensionless}

DOCUMENT: Set to one to enable experience dilution effects (zero to disable).
extra_staff_needed = MAX(0, MIN(total_staff_needed, maximum_staff_level) - Effective_Staff) {people}
follow_budget_switch = 1 {dimensionless}

DOCUMENT: Set to 1 to follow project project with regards to staffing. Set to zero to staff based on progress
and schedule.

incremental_error_fraction_of_experienced_staff = 0 {dimensionless}
DOCUMENT: Fraction of errors generated by the experienced staff above the normal error rate. This will
usually be zero because we would just change the normal error rate otherwise.

incremental_error_fraction_of_new_staff = IF agile_switch THEN 0.35 ELSE 0.5 {dimensionless}
DOCUMENT: Fraction more errors generated by new staff than by experienced staff (i.e., new staff error
fraction/experienced staff error fraction - 1).

Improve by 15% for Agile due to short cycles, so easier to jump into a project.

initial_experienced_staff = 4 {people}
initial_new_staff = 0 {people}
initial_scheduled_completion_date = 25 {months}
maximum_staff_level = 25 {people}
relative_productivity_of_new_staff = IF agile_switch THEN 0.65 ELSE 0.5 {dimensionless}

DOCUMENT: New staff productivity as a fraction of experienced staff (i.e., new staff
productivity/experienced staff productivity).

Improve by 15% for Agile due to short cycles, so easier to jump into a project.

time_remaining = MAX(1, scheduled_completion_date - TIME) {months}
DOCUMENT: Automatically extend the schedule one month if we are not yet done. It is fairly typical to
change the date in these cases and we do not want a zero result here. Note this is the time left to when we hope
to finish the project.

time_to_gain_experience = 24 {months}

Modeling Agile Development 59 © 2007 by K. Chichakly

DOCUMENT: Time to gain experience overall (should be shorter for just this project).
Total_Staff = New_Staff + Experienced_Staff {people}
total_staff_needed = MIN(total_staff_needed_based_on_effort_and_time_remaining,

total_staff_needed_based_on_max_work_rate) {people}
total_staff_needed_based_on_effort_and_time_remaining = estimated_effort_remaining/time_remaining {people}
total_staff_needed_based_on_max_work_rate = IF project_finished_switch THEN 0 ELSE

maximum_total_work_rate/estimated_productivity {people}
vary_staff_switch = 1

DOCUMENT: Switch to enable staff to vary to make up for schedule delays (set to one to enable and zero to
disable).

This also controls the letting go of people at the end of a project.

willingness_to_hire = 1
DOCUMENT: Varied between zero and one. Zero means we are not willing to hire anyone no matter what
happens to the schedule (setting it to zero has the same effect as setting vary_staff_switch to zero). One means
hire as required to meet the schedule. A value in-between allows some hiring to take place. In this case, it is
treated as the fraction of needed hires we are willing to hire at any point.

weight_on_progress_based_estimates = GRAPH(fraction_perceived_to_be_complete {dimensionless})
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.1), (0.4, 0.25), (0.5, 0.5), (0.6, 0.75), (0.7, 0.9), (0.8, 1.00), (0.9,
1.00), (1, 1.00)

willingness_to_transfer\fire = GRAPH(adjusted_fraction_of_total_perceived_complete {dimensionless})
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.00), (0.6, 0.00), (0.7, 0.1), (0.8, 0.5), (0.9,
0.9), (1, 1.00)

Uncertain Requirements
effect_of_uncertain_customer_requirements = IF frequent_releases

THEN uncertain_requirements_switch*maximum_effect_of_uncertain_customer_requirements*(1 -
elimination_of_uncertainty_based_on_progress_freq)

ELSE uncertain_requirements_switch*maximum_effect_of_uncertain_customer_requirements*(1 -
elimination_of_uncertainty_based_on_progress_std) {dimensionless}

maximum_effect_of_uncertain_customer_requirements = IF kiss THEN 0.15 ELSE 0.2 {dimensionless}
uncertain_requirements_switch = 0 {dimensionless}

DOCUMENT: Set to 1 to enable the effect of uncertain customer requirements on errors (and zero to disable).
elimination_of_uncertainty_based_on_progress_freq = GRAPH(fraction_perceived_to_be_complete

{dimensionless})
(0.00, 0.495), (0.1, 0.5), (0.2, 0.52), (0.3, 0.545), (0.4, 0.58), (0.5, 0.615), (0.6, 0.675), (0.7, 0.775), (0.8, 0.895),
(0.9, 0.96), (1, 0.995)

elimination_of_uncertainty_based_on_progress_std = GRAPH(fraction_perceived_to_be_complete
{dimensionless})
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.00), (0.6, 0.1), (0.7, 0.3), (0.8, 0.6), (0.9,
0.85), (1, 1.00)

Work Metrics
effect_on_productivity_from_precedence = IF project_finished_switch THEN 1 ELSE

total_work_accomplishment/potential_work_rate {dimensionless}
maximum_total_work_rate = maximum_work_rate_on_original_work + maximum_work_rate_on_rework

{tasks/mo}
potential_work_rate = potential_work_rate_on_original_work + potential_work_rate_on_rework {tasks/mo}
total_work_accomplishment = original_work_accomplishment + rework_accomplishment {tasks/mo}

