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Abstract 

Several classical system dynamics models, such as models of disease spread, and 

technology adoption, are built under assumption of a homogeneous population. 

These assumptions have been recently challenged by recent results showing that 

the degree distributions of many social and natural networks, such as the so-called 

scale-free networks, exhibit long-tailed degree distributions. This paper adopts a 

system dynamics approach to replicate preferential attachment, one of the 

network dynamics mechanisms known to produce power-scale distributions. We 

then study the diffusion processes on these networks, e.g. epidemics, product 

adoptions. We consider a basic compartment model (Susceptible- Infected) and 

apply scale free network topology in place of the random network topology that is 

traditionally assumed. The resulting model is used to assess the effect of the 

topology on the diffusion of attributes throughout the network.  
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1  Introduction 

The purpose of this paper is to show that systems dynamics techniques can be used to understand 

the importance of network topology in policy development. Rigorous mathematical treatment of 

the issues raised herein has been avoided to broaden the intended audience. We are motivated to 

use systems dynamics techniques because they can make highly complex mathematical problems 

accessible to decision makers and policy developers.  

 

Networks are found everywhere and on every scale. Whether we are focused on neural networks 

in the brain, sexual networks
1
, or the World Wide Web

2
, we find that groupings of objects are 

defined not only in terms of the objects themselves, but also in the way that they are connected. 

Whether the context is disease epidemiology, product marketing, or understanding the rise and 

fall of political and religious movements, many authors (Barabàsi
3
, Albert, Watts

4
) have shown 

that knowledge of the network’s topology is key to understanding its dynamical behavior. 

 

Through modeling and simulation, we would like to be able to answer questions about the 

importance of network topology in policy analysis. For example, if a public health organization 

were tasked with distributing only a limited number of vaccines with maximum effectiveness, 

would it be equally effective to distribute them randomly or in some directed fashion? Or in 
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another problem context, could an understanding of social network topology be used to develop 

policies to prevent the spread of religious fanaticism?  Throughout this study, we may adopt 

several problem contexts (disease, political campaigns, etc.) to make the analysis conceptually 

tractable; however, we ask the reader to maintain a broad minded perspective and recognize that 

the implications of this preliminary analysis extend further than the specific results discussed 

herein.  

  

2 Background 

 

2.1 Networks 

 

2.1.1  Networks and Attributes 

 

A network consists of a group of objects connected in some fashion. Objects can be people, 

neurons, computers, or geographic locations. Each object can be distinguished by one or more 

attributes or states. In building an epidemiological model, we would describe objects as either 

healthy or infected, while a political campaign model describing the same community or group 

of objects (people) would describe nodes as republican, democrat, or simply decided or 

undecided.  The same network of objects can look very different depending on the object 

attributes in which we are interested.   

 

In many networks connections between objects play an important role in determining their state.  

Nodes will adopt different attributes or states based on the attributes or states of the nodes to 

which they are connected.  For example, the chance that someone will contract a sexually 

transmitted disease has everything to do with whether his/her sexual partners are healthy or 

infected. Links can be characterized by interactions (verbal, sexual) or by literal connections 

(wires in a device, or telephone lines). When a node has made a transition from one state to 

another because of its links to other nodes in the network, that node is said to have adopted a 

particular trait. This study will focus on questions of adoptership and the diffusion of traits 

throughout the network. We will address the degree to which network topology should be 

considered in developing policy.   

 

2.1.2 Terminology 

 

A node is an object in the network. As mentioned above, at any time t a node can exhibit one or 

more attributes or traits. Nodes are connected by links.  In our models, nodes change state based 

on the number of links they have and the state of the nodes to which they are connected. A node 

with n links is said to have degree n. Two simple networks are shown in Figure 1 below:  
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All nodes in the network need not necessarily have the same degree; i.e. some nodes may be 

more highly connected than others. The structure of the network can be more easily understood 

by creating a histogram, where the number of nodes of each degree are counted and plotted in 

increasing order from 1 to n. This histogram can be used to create a probability mass function 

that describes the degree distribution of the network where P(k) gives the probability of finding a 

node of degree k. This profile can be used to characterize the connectivity of network as a whole 

and to determine its similarity or dissimilarity to other networks.  

 

2.1.3 Degree Distributions 

 

The Erdõs-Rényi (ER) model is often used to generate complex networks. The ER model 

assumes a collection of N nodes where each pair of nodes is connected with probability p. This 

creates a random graph with a degree distribution that is strongly peaked at its average value 

<k> and decays exponentially for large degree values. For the ER model, the degree of many 

nodes in the network can be reasonably characterized by the expected value of the degree 

distribution. This characteristic has been assumed to be applicable for many networks and has 

been broadly used in epidemiological (ex. SIR model)
5
 and other network studies.  Recently, 

studies have shown that this assumption may not be valid in a significant number of networks
3,4

. 

Social networks, neural networks, and computer networks to name a few have been shown to 

have connectivity distribution that looks quite different from the normal degree distribution
6
.  In 

these networks, the connectivity distribution looks more like a power law (see Figure 2). 
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Figure 2: Power Law Degree Distribution, Random and Scale Free Networks 

  

Note that in networks with power-degree distributions low degree nodes are common but there 

exist a few nodes of high degree that are very well connected. Highly connected pivotal nodes or 

Two Node Network where each 
node is of degree 1 

Three node network where 
each node is of degree 2 

Figure 1: Simple Networks 
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“hubs” are not recognized when a ER model is assumed, but we shall see that these highly 

connected nodes are pivotal in the diffusion of attributes through the network.  

 

The critical difference between random networks and scale-free networks is that the ER model 

degree distribution can be reasonably well characterized by its average value. Networks with 

power distributions are harder to characterize because the average value of the degree 

distribution tells us very little about the majority of nodes in the network. They are called “scale-

free networks” in part because statistics like averages and variances tell us very little about the 

majority of the nodes.   

 

2.2 Traditional Epidemiological Models and Scale Free Networks 

 

The Susceptible-Infectious Model (SI-Model) is one of the simplest epidemiological models
7
. 

We will briefly adopt a disease epidemiology terminology, but we would like to remind the 

reader that the concepts are applicable in broader contexts. The model divides a sample 

population into two categories: persons susceptible to infection and those that are already 

infected.  

 

In the traditional SI-Model, the growth of the adopter population is a function of the infectivity i, 

the contact rate c, and the fraction of the population that has already been infected.  The infection 

rate is given as:  

 

� 

IR = ciS
I

N

! 

" 
# 

$ 

% 
&       (1) 

Where S is the susceptible population, I is the infected population and N is the total population 

(N=S+I). The contact rate c can be assumed to represent the average number of people that a 

susceptible person interacts with per time step, where i is the likelihood that one of those 

interactions will result in an infection. Note that the infections are stochastic, meaning that 

chance determines if a new infection will occur from an interaction with an infected node. The 

model becomes more complicated when the total population grows over time, or if people are 

only infectious for a period and then recover from the disease.  

 

In this traditional model, it is assumed that the connectivity structure of the population can be 

characterized by a single value (c).  If the model were used to study sexually transmitted disease, 

it would assume that you were almost equally likely to have the same number of sexual contacts 

with people of every sex, age, location, attractiveness, wealth, and social status. The point is 

made simply to illustrate that actual human interaction may have a structure that is more 

complex than that assumed in the model above and should be considered in more complicated 

models. Social networks such as the network of sexual relationships are scale free
3,4

, implying 

that there is a significant number of persons with a very large number of sexual contacts, 

affecting the dynamics of diffusion in the network. 

 

 

We proceed as follows. In Section 3, we discuss our approach to capturing scale-free network 

dynamics using standard system dynamics techniques. Then, in Section 4, we use this structure 
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to model the dynamics of infection diffusion in such a network, and compare this to the results of 

the classical SI model. Later in Section 5, we model market competition assuming only word-of-

mouth dynamics, but exploiting the network topology. We show that in these cases knowledge of 

network structure is a key factor in policy analysis. Finally, we discuss the relevance of these 

results for the system dynamics community, in general, and policy analysis of these issues.  

 

3 Scale-Free Network Model 

 

3.1 Description 

 

First, we develop a simulation that generates Barabàsi-Albert (BA) scale-free networks using 

stock and flow models, based on the preferential attachment mechanism.  The BA network is 

among the simplest scale free models and can be generated recursively in the following way
8
:  

 

…starting with a small number (m0) of vertices, at every time step t we add a new vertex 

with m(! m0) edges that link the new vertex to m different vertices already present in the 

system. To incorporate preferential attachment, we assume that the probability " that a 

new vertex [connects to a node] i depends on the degree ki of that vertex, so that 

 ( ) /i i j

j

k k k! = "  (2) 

After t steps the model leads to a random network with t+m0 vertices and mt edges. 

[Note: In practice, the initial distribution of nodes must be accounted for in the 

calculation of the number of edges that the network will have at time t, so the actual 

number of edges may be slightly higher than mt.] 

 

We can capture the preferential attachment dynamic in a stock and flow model, by using a 

separate stock to hold the number of nodes in the network with a certain degree, shown in figure 

(3) using iThink’s array diagram. As new nodes enter the network they will establish m new 

links. The effect of these new links is promoting m nodes from a given degree, to the next 

degree. These nodes are chosen according to Equation (2). Formally, we have 

 

� 

Degree[n](t +1) = Degree[n](t) + Promote[n !1](t) ! Conservation[n](t),

P Promote[n](t) = k( ) =
m

k

" 

# 
$ 

% 

& 
' p

k
1! p( )

m!k
,

Conservation[n](t) = Promote[n +1](t),

 

where 

� 

p =
nDegree n[ ] t( )

iDegree i[ ] t( )
i= m

0

m 

!
. 

The stock and flow diagram of the model is shown below, using iThink’s array feature to denote 

multiple (indexed) diagram elements. In this case, the elements Degree n, Conservation of Flow, 

Promote, Cumulative Pn, Pn, and Weighted Membership are indexed by the degree number.  
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Figure 3: iThink model of preferential attachment dynamics 

 

For each simulation in this section, the model begins with m0=3 vertices, each of degree 2 (k2 

=3), and adds a new node to the network at each time step.  Each new node is allowed to 

establish two connections to existing nodes. For each time step the probability that an entering 

node will attach to an existing node of degree i is given by Equation (2); this method of 

attachment favors highly connected nodes.  

 

3.2 Validation and Assessments of the Model 

 

We will attempt to verify that the model does in fact generate an approximate B-A network by 

comparing the connectivity distribution for the network simulation with the analytic solution for 

the B-A network
9
. The analytic solution yields the following connectivity distribution:  

 

� 

P k( ) = 2m
2
k
!"  (3) 

indicating the probability of being a node with degree k, where m is the number of attachments a 

node makes to existing nodes upon entrance to the network, and 

� 

!  is the scaling exponent that 

determines the shape of the connectivity distribution. The average connectivity for this 

distribution can be shown to be 

� 

k = kP k( )
k = m

!

" = 2m       (4) 

We should see the analytic degree distribution reduce to 3( ) 8P k k
!

= for our model.  

 

Five simulations were performed; each was allowed to run for 1000 time steps, generating a 

network with 1003 nodes and 2003 links. After each simulation, the final connectivity 

distribution was recorded. The number of nodes of each degree were averaged across the five 

simulation runs to find a general degree distribution which is shown in the table below. 

Table 1. Empirical distribution of nodes with a given degree after 1000 nodes are added. 

Degree Dn 
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3 399 

4 200 

5 109 

6 70 

7 49 

8 34 

9 23 

>=10 95 

 

This distribution was fit to Eq 1.2 using a least squares regression. Regression showed the 

empirical value for 

� 

! = 2.71. Although this does not match the analytic solution of 

� 

! = 3, we can 

be reasonably sure that the distribution can be modeled with a power law because the R-sq value 

for the regression was R
2
=.98.  

 

Because of the disparity between the theoretical and empirical values, we sought to verify that 

the simulation had reached steady state by creating a dynamic measure of gamma as the 

simulation progressed. The graph below shows that even after 32,000 time steps, the simulation 

had not reached the steady state, theoretical distribution.  
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Figure 4: Calculation of empirical distribution shape parameter 

 

We are encouraged that several real-world networks have connectivity distributions with gamma 

values close to 2.71 (See Appendix B- for a table of actual gamma values). The deviation from 

the analytical solution in our model is not outside the variance in B-A network topology that can 

be found in the real world. For this reason we accept that the model generates a reasonable BA 

network and turn to the next stage of the analysis.  
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3.3 Discussion 

 

The preferential attachment model may exhibit different behavior from the analytical solution for 

several reasons. Figure 4 shows that the steady state for the system may not have been reached. 

Because we are still in a stage of transient behavior, deviations from the analytical solution can 

be expected. Additionally, our model does not distinguish nodes that have degree higher than 

n=10. One of the most predominant features of the scale free network is that its degree 

distribution is ‘heavy tailed’ meaning that the distribution has significant mass in the higher 

degrees.  Combining all of the nodes n > 10 into the same category biases the preferential 

attachment structure in the model. High degree nodes are underweighted in the Equation (2), 

biasing the attachment structure to lower degree nodes. This may also partially explain the 

deviation from the analytical solution.  

 

As with any model, there are several simplifying assumptions that have been made and should be 

explicitly discussed so that the model can be applied appropriately. This model assumes a steady 

growth rate for the network. In fact, networks may tend have growth bursts and periods of 

relatively constant size. This may affect the dynamics of the network and should be considered 

as the results of this model are applied. Additionally, this network model does not allow existing 

nodes to form links. The only new links in the network are formed entering nodes. Additionally 

once links have been formed, they are assumed to last indefinitely. Incorporating transient links 

into the model would significantly complicate its dynamics. In general, we feel the value of this 

model is in its simplicity and hence its accessibility; as is always the case, systems in the real 

world may be significantly more complicated.  

 

4 Scale Free-Attach 2 SI Model 

  

 

The next step is to adapt the model to incorporate two distinct populations (susceptible and 

infected) and to establish structures by which infections occur.  The “Degree n” bin array from 

the previous section will be renamed “Potentials” (Susceptible) and a second set of bins is added 

to the model and will be labeled “Adopters” (Infected). The adopter bin works the same way as 

the potentials bin with the value of An representing the number of infected nodes in the network 

with degree n. The valve “Infections” moves a node from the potential population to the adopter 

population when it is infected.  

 
Potentials Adopter 1

Promote P Inf ection Promote A

Conserv e P Conserv e A

 

Figure 5. Basic stock and flow structure for the SI-Scale-free model. 
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All nodes entering the network do so via the potential population by preferential attachment 

structure (Equation (2)). Because the network is separated into potentials and adopters, the 

probability of attaching to a degree i node is now,  

� 

!(k) =
(Ak + Pki)

(A j + Pj )
j =1

m 

"
       (5) 

 

Much the same as epidemiological infections, making a link with an infected node does not 

guarantee that an additional infection will occur. When a node establishes a link, the probability 

that the link is infectious is simply the number of potentially infected links in the network 

divided by the total number of links, which we shall call ! . We define the infectivity to be the 

probability that an infected link will result in a new infection and denote it by ! . Therefore, the 

product !" gives the probability of a randomly chosen link resulting in a new. With this in mind, 

we find that the probability that a node of degree n will become infected is simply 

� 

P
I
(n) = 1! (1!"#)

n       (6) 

 

At each time step every potential node is susceptible to new infections. Nodes either become 

infected or remain in the potential population, so each time step can be considered a series of 

Bernoulli Trials where the probability of infection is given by the equation above. Consequently, 

the number of degree n nodes that are infected at each time step can be considered a binomial 

random variable with Pn independent trials and probability )(
n
kIP of success. The expected 

number of infections, per degree, at each time step is  

� 

E[I
n
] = P

n
!P

I
(n)      (7) 

Highly connected nodes are more likely to become infected than less well connected nodes.  

 

4.1 Validation and Assessment of the Model  

 

Our first step is to verify the qualitative relationship between the infectivity and the growth of the 

adopter population.  

 

An exact analytical solution for the infection rate as function of time will be difficult to obtain. 

Instead, we note that the infection rate at each time step will equal the sum over all degrees for 

the infection value,  

!=
n

n
IEIR ][        (8) 

and that each term in the sum increases its value with the infectivity !. Because there are no 

recoveries and the infection rate always remains positive, we predict that the adopter population 

growth rate will increase with the infectivity !.  

 

! Color 

0.000 Blue 

0.001 Red 

0.002 Pink 

0.003 Green 

0.004 Orange 

0.005 Yellow 
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Figure 6: Infection Prevalence In Scale Free Network for different infectivity values. 

   

Figure 6 shows that the rate at which the adopter population grows increases with the infectivity 

!. When the graph above is compared to a traditional SI-model that assumes random network 

topology, we verify that network topology significantly affects the growth rate of the epidemic.  

 

A traditional SI-model was constructed with an initial susceptible population of 1000 and 3 

initial infections. A single individual was added to the susceptible population at every time step 

and the simulation was allowed to run for 1000 iterations. The contact rate was assumed to be the 

average connectivity from the analytic solution to the BA-network. The same infectivity values 

were used as in the Table that accompanies Figure 6.  
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Figure 7: Growth of the adopter population for the same infectivity values shown in Figure 6 using the 

traditional S-I model with random network topology. 

 

The comparison indicates that stochastic infections may propagate more quickly through scale 

free networks than in random networks.  
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4.2 Sensitivity to the Initial Distribution of Infected Individuals 

Next, we explored the affect of the initial distribution of infections on the growth of the adopter 

population. Two scenarios were considered, one where the adopters were selected randomly over 

the connectivity distribution of the initial potential population, such that the initial number of 

adopters of each degree is given by, 

nn
IA !=
0

      (9) 

where
0
I is the total number initial adopters. In the second scenario, the most highly connected 

0
I members of the network are chosen as the initial adopters. More specifically, the number of 

initially infected individuals of each degree is determined by starting at the highest degree and 

moving 
0
I individuals to the adopter population.  If 

� 

I
0

> P
m  then the remaining 

� 

I
0
! P

m  infections 

are taken from the next 

� 

P
m !1

 individuals with a smaller degree. This process repeats until 
0
I of 

the most highly connected nodes are infected.  
 

Table 2:Summary of results of the SI Scale-free network where we measure the mean and standard deviation 

of the time at which the adopters overcome potential persons. 

Simulation Time Step Where ! !
= =

"
10

2

10

2n n

nn
PA  

 Random Adopters High Degree Adopters Random Adopters High Degree Adopters 

I0 95% Confidence Interval, " 95% Confidence Interval, #
2
 

5 [1105, 1215] [903, 959] [10335, 29447] [2636, 7511] 

10 [895, 966] [758,795] [4407, 12558] [1160, 3304] 

50 [568, 597] [477, 502] [756, 2153] [541, 1540] 

 

The second and third columns of Table 2, indicate that in a scale-free network, the initial 

distribution of infected nodes does affect the growth of the adopter population. This is not true in 

traditional epidemiological models where all nodes are assumed to have the same number of 

relationships. In scale free networks, infecting the highest degree nodes will shorten the time 

needed for the attribute to be adopted by more than 50% of the population. This may have broad 

implications in disease epidemiology, network security, intelligence communities, and marketing 

activities.  For example, sexual networks have been shown to have scale free topology, public 

health professionals may have reason to focus interventions on the most sexually active segments 

of the population. Similarly, IT security professionals may want to focus their security efforts on 

the most highly connected computers or websites and marketing professionals may want to focus 

promotional efforts on celebrities and other highly connected people.  The policy implication 

may be that controlling adoptership in networks depends on their topology; in scale free 

networks the most highly connected nodes are key to either promoting adoptership or preventing 

it.  

 

The variance in the growth of the adopter population has equally important policy implications. 

At the 5% significance level, we can say that the growth of the adopter population has greater 

variance with randomly distributed infections than with the infection of only the most highly 

connected individuals (except in the case where 0.5% of the initial network is infected where we 

can not reject the hypothesis that the variances are the same). This indicates that network 

topology may also affect have policy implications on predictability. Because there was more 

variance in the growth of the adopter population when infections were randomly distributed 
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throughout the network, policies that are directed at highly connected individuals may play out 

more predictably.   

 

4.3 Discussion 

 

Equation (7) describes the number of infections per degree as a Bernoulli random variable. 

Software constraints led us to use the Poisson distribution instead. The two distributions 

converge for very large numbers of trials, but the discrepancy may have been significant for the 

number of ‘trials’ in our model (persons in the potential population of the nth degree typically 

ranged from [10, 10
3
].  

 

The assessment of the parameter ! for this model is intended to demonstrate to the reader that the 

infectivity parameter affects the growth of the adopter population. The comparison with the 

growth of the adopter population in the random network SI model is intended to demonstrate that 

the two models are not equivalent. The scale free model may not exhibit faster growth of the 

adopter population in all cases. In-depth analysis is needed to complete a proper comparison of 

the models and their dynamics.  

 

Similarly the second part of the assessment is intended to demonstrate that the initial distribution 

of adopters affects the growth of the adopter population. Confidence intervals shown in Table 2 

have been calculated for a single sized network with a constant infectivity parameter. The effects 

of the initial distribution should be considered on additional scales for a range of different sized 

networks. Additionally, there may be interaction effects between the infectivity parameter and 

the initial distribution of adopters. In practice, they should not only be studied independently, but 

also in combination.    

5 Competing Infections  

 

5.1 Description 

 

This model includes a second adopter population and was built to examine competition in the 

same scale free network.  In the second adopter population, Adopter 2, infections occur by the 

same method as in the previous model, with each adopter type having its own infectivity (!1 and 

!2) and initial distribution of infections A1n and A2n with [3<n<10].  New nodes are still 

incorporated into the existing network by preferential attachment, although equation (2) must be 

slightly modified to include members of the A2n network. The model structure is shown below 

and a detailed explanation of the model can be found in the appendix. 
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Potentials Adopter 1
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Conserv e P

Adopter 2

Inf ection 2

 

Figure 8. Stock and flow diagram for a system with two competing adoption processes. 

 

5.2 Validation and Assessment  

 

The purpose of this analysis section is to begin to understand the effect of both the initial 

distribution of adopters and the infectivity for competition in the same scale-free network. This 

model may have implications when two entities are competing for adoptership, such as 

businesses competing in the same marketplace, or political candidates and campaign activities.   

 

This preliminary analysis can be used as a fist step to understanding the effect of highly 

connected individuals such as celebrities in marketing activities or powerful lobbyists in political 

campaigns. Political campaigns provide an excellent framework to start to ask these types of 

questions and so we will use that particular context for the bulk of this analysis, but it should be 

recognized that the results can be extended, by analogy to many other contexts as well.  

 

Consider the start of a local campaign in a small town somewhere in the United States. There is 

some segment of the population, say 33% that are already aware of the issues and the two 

political candidates, this group comprises the initial potential network. As the election draws 

closer, the pool of people who become interested in the campaign increases and more and more 

people join the potential population. When a member of the community has selected their 

candidate, they are said to have adopted that candidate and they will move to the adopter 

population A1 or A2 depending on their choice.  The infectivity parameter ! will represent in the 

likelihood that a voter will be ‘infected’ with a candidate’s message and will offer their vote; but 

in general the infectivity parameters could take on several interpretations.  In further analysis, ! 

could be considered a function of the effectiveness of the candidate’s message, personal 

charisma or possibly the size of the financial resources available. The initial distribution of 

adopters could be campaign staff, friends and family.  

 

We can now use the model to answer questions about David and Goliath type campaign battles. 

For example, how difficult is it for an unknown candidate to capture more votes than a well 

connected incumbent? How much more infectious must the challenger’s message be to regain 
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the ground lost by the incumbent’s name recognition and political connections? Or in the event 

that each candidate’s message has the same appeal, how many more people must the challenger 

contact to make up for the advantage afforded by the pre-existing relationships of the incumbent?  

 

In this analysis A1 will be the adopter population of the well-connected incumbent with 

infectivity parameter !1. The challenger will be represented with A2 adopter network, with 

infectivity parameter !2. The fist step in this analysis is to get an idea of the sensitivity of the 

competition to differences in the infectivity parameters.  For example: 

 

Does the challenger’s message need to be twice as infections as the incumbent’s to make 

a clear difference in the outcome, or do smaller changes have significant effects?  

 

For this part of the analysis we let !1= 0.001 for all model runs; this will be used as the 

comparison value. As a preliminary analysis strategy, we made adopter 2 twice as infections as 

adopter 1 such that 2!1 =!2. We ran 30 simulations, each for 2000 time steps. At the end of each 

simulation, we will record the candidate who has captured more of the population. The number 

of times that the more infectious candidate wins the election will be recorded. This process was 

repeated for the range of values shown in Table 3.  

 

Table 3: Mean and Variance for the probability that the candidate with higher infectivity captures more of 

the potential population 

" describes winning percentage of candidate 2 
$1 !2 X-bar 95%CI " S 95%CI #

2 

0.0010 .0010 0.533 [0.315, 0.752] 0.506 [0.16, 0.46] 

0.0010 .0011 0.800 [0.624, 0.976] 0.407 [0.11, 0.3] 

0.0010 .0012 0.700 [0.499, 0.901] 0.465 [0.14, 0.39] 

0.0010 .0013 0.933 [0.824, 1.043] 0.252 [0.04, 0.11] 

0.0010 .0014 0.967 [0.888, 1.045] 0.181 [0.02, 0.059] 

0.0010 .0015 0.967 [0.888, 1.045] 0.181 [0.02, 0.059] 

0.0010 .0020 1 [1,1] 0 [0,0] 

  

The table shows that the competition was clearly sensitive to differences in the infectivity larger 

than 30% at the 95% significance level. This gives us a basis to be able to start comparisons in 

the competition model.  

 

The next question we’d like to answer in the context of the campaign battle scenario is: 

 

Given that the incumbent has connections to the top 1% most connected people in the 

community, how much more infectious must the underdog’s message be to have a chance 

of winning the election? [given that the challenger starts the campaign with a random 1% 

of the population as supporters]  

 

As a preliminary analysis, we will start the campaign simulation with equal infectivity (i.e. 

!1=!2= .001) and gradually increase the challenger’s infectivity. At each level, we performed 30 

simulations and recorded the percentage where the challenger was able to beat the incumbent. 

Our plan was to gradually increase the challenger’s infectivity until the 95% mean confidence 

interval for the election outcome captured the value .5. This would give a preliminary indication 

of the magnitude of the impact of the infectivity parameter verses the initial distribution of 
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supporters. To our surprise, even an infectivity of  !2= 1 was not enough for the challenger to 

catch the incumbent by the end of the simulation. In fact, the incumbent was victorious in all 30 

trials, even when there was a 100% chance that a potential voter would support the challenger if 

they came into contact with one or more supporters.  

 

Next, we turned to the question of the size of the initial supporter network: 

  

Given that the incumbent had was supported by the top 1% most connected individuals, 

what size would the underdog’s randomly distributed network of supporters be to offset 

the incumbent’s advantage?  

 

We will gradually increase the size of the underdog’s “grass roots” support network and record 

the fraction of the time that the incumbent is ahead at the end of the simulation. We will continue 

to increase the size of the challenger’s network until the 95% confidence interval for the 

incumbent’s win percentage no longer contains the value .5. Values for the trials are shown in 

Table 4 below.  

 

Table 4: Mean and Variance for 'Incumbent' win percentage, given a highly connected network of supporters 

representing 1% of the total population. Compared against various sizes of the challenger’s randomly 

distributed initial network of supporters. 

Initial Supporters as a percentage of total initial 

population 

      

Highly Connected Grassroots Victory Percentage 

(Incumbent A1) 

     

Incumbent (A1) Challenger (A2) Sample Mean 95%CI " Sample St. 

Dev. 

95%CI #
2
 

1% 1.5% 63% [.422 .845]  [0.15 0.433] 

1% 2% 60% [.385 .815]  [.16 .488] 

1% 3% 20% [.025 .375]  [.10 .30] 

  

 This preliminary analysis has important implications in policy development. In the context of 

the campaign battle, this analysis may indicate that a challenger should focus on the size of 

his/her grassroots network more than the infectivity of the message.  

 

5.3 Discussion 

 

Table 3 was assembled determine the sensitivity of the competition to differences in the 

infectivity values of the competitors. Similar analysis should be repeated in multiple networks of 

different sizes, and with a range of comparison values to determine if the significance level here 

is the same across all values. This analysis was intended to show one possible method by which 

such distinctions could be made and should not be considered a universal result.  

 

Similarly, the second part of the assessment is not intended to show that the ‘challenger’ 

population would never be able to compete with a well-connected competitor.  The results 

should not be generalized at this point and a rigorous analysis that includes multiple sized 

networks and a range of initial adopter populations is needed to determine the general behavior 

of the system. The reader should take from the discussion the point that in this model, for the 
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parameters chosen, there is a point where the connectivity of initial adopter population makes the 

challenger unable to catch up, even with an equally sized random distribution of initial adopters 

and an infectivity value of 1. The third part of the assessment should be treated similarly in terms 

of the generality of the result and the need for further analysis. The analysis shown is intended to 

support the general theme that network topology plays a significant role in diffusion behavior in 

networks.  

 

Conclusions 

 

Systems Dynamics tools can be used to present the importance of network topology policy 

development. We have shown that these techniques can provide insight into the effects of 

infectivity parameters and initial distribution of adopters on the diffusion of properties through a 

network. Section 3 demonstrates that uncomplicated systems dynamics models can be used to 

present the preferential attachment mechanism and to verify that the models generated by the 

simulations are similar to those that are found in many real-world problem contexts. Section 4 

showed that systems dynamics concepts can be used to demonstrate that the diffusion of 

attributes through a network was different depending on the network topology that was assumed.  

Section 5 showed that similar techniques could be used to explain the importance of highly 

connected nodes and their affect on competition in established networks. Each of these concepts 

has been made more accessible to decision makers who may not have the background needed to 

understand more analytical treatments of these issues.  

   

This study is intended to demonstrate the value of systems dynamics techniques in making 

highly technical concepts accessible to decision makers. The implication is that systems 

dynamics should be developed so that the benefits of advanced network theories are not only 

understood by highly specialized, technically trained individuals. Policy development is very 

difficult in the midst of systems and networks that behave counterintuitivly.  Systems dynamics 

can be used to explain the existence of non-linear behaviors, and the magnitude of their effects. 

Bridging this gap is essential for intelligent policy development.  

 

Additional work needs to be completed to make recent advancements in network theory 

available to decision makers at all levels. Systems dynamics has demonstrated enormous 

potential to bridge the gap between esoteric theories and mainstream thinking. Specifically, 

along the lines of this paper, these models should be adapted to incorporate more complex 

mechanisms of networks and social diffusion. Temporary adoptership should be incorporated as 

in the Susceptible-Infected-Recovered model widely used in disease epidemiology.  More 

complex network generating algorithms should be incorporated into these models, including 

those that allow existing nodes to establish new links, and those that allow links to exist for a 

finite period. The dynamics of attachment (network growth) are varied and complicated; systems 

dynamics may be used to make them increasingly accessible.  

 

The network models presented herein will certainly need to be adapted to alternative problem 

contexts in order to reap their full demonstrative benefits. Modeling religious fanaticism and 

acute infection epidemics (avian flu) seem to be two areas that are at the forefront of national and 
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international concern. There may be great benefit in adapting these techniques to allow decision 

makers and policy developers to gain insight into the mechanics of these problems.   
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Appendix A: Scale Free Attach 2 Model 

 

The model consists of the following pieces: 

Stocks 

Degree n –  there are 9 bins in this array, the value of bin(i) gives the number of nodes 

in the network with degree i for 2< i <10 with the exception that the value 

of bin(10) is the number of nodes in the network with degree >10.  

Valves 

Promote –  When a node makes a new link, this valve array allows the node to 

advance in degree from bin(n-1) to bin(n) such that the value of bin(n) 

increases by 1. Because each new node is allowed to make two new links 

upon entering the network, each of the 9 valves can take on the value 0,1 

or 2 at each time step subject to the constraint that the 
i

i

P! < 2 for each 

time step t.  

 

Conserve - When a node makes a new link and advances in degree from bin(n-1) to 

bin(n), this valve array allows the value of bin(n-1) to decrease its value 

by 1. It is true that for each C(i), C(i)=P(i+1).  

Converters 

 

Pn –  is an array converter. For each Degree(i) the converter takes the value of 

"(ki) from Equation 1.1. 

 

Cumulative Pn- is an array converter. For each Degree(i) the converter takes the value of 

2

( )
i

i

i

k

=

!"  which is the probability that a new node will make an 

attachment to an existing node with Degree < 2. 

      

Total membership and Weighted membership are simply perform intermediate 

calculations for Pn 

 

Rand1 and Rand2- are random variables taken from Uniform(0,1) distributions 

respectively. They are used to determine which attachments will an entering node 

will establish when it joins the network. The first attachment is determined by 

Rand1. At every time step, Rand1 produces a number between 0 and 1. This value 

is checked against the values Cumulative Pn array at that time step. The entering 

node will establish a link with an existing node of degree i if Cumulative P(i-

1)<rand1<Cumulative P(i), at which point Promote(i+1)=1 and Conserve(i)=1. 

The same is true for the second connection with Rand2.  
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Appendix B: Shape Parameters for Scale Free Networks 

 

Network Size Gamma Reference 

Citation 783,339 3 S. Tedner, “How popular is 

Your Paper? An Empirical 

Study of the Citation 

Distribution” European Phys. 

J. B4, 131-135 (1998)  

Words, Concurrence 460,902 2.7 R., Ferrer I Cancho and R. 

V.Sole, “The Small World of 

Human Language” Proc. Poy. 

Soc., London B 268, 22 61 

2001 

Words, Synonyms 22,311 2.8 S Yook, H Jeong, & A. L. 

Barabasi, unpublished (2001) 

Phone Calls 53 x 10
6 

2.1 W., F. Chung, & L. Lu, 

Proceedings of the 32
nd

 ACM 

Symposium on the Theory of 

Computing, ACM, New 

York, p. 271 (2000) 

Sexual Contacts 2810 3.4 F. Liljeros, C.R. Edling, 

L.A.N. Amaral, H. E. 

Stanley, & Y. Aberg, Nature, 

London, 411, 907 (2001) 
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