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Abstract 
 
Growing concern about climate change and energy security has led to increasing interest 

in developing renewable, domestic energy sources for meeting electricity, heating and fuel needs 
in the United States. Illinois has significant potential to produce bioenergy crops, including corn, 
soybeans, miscanthus (Miscanthus giganteus), and switchgrass (Panicum virgatum). However, 
land requirements for bioenergy crops place them in competition with more traditional 
agricultural uses, in particular food production. Additionally, environmental and economic 
conditions, including soil quality, climate, and variable agricultural costs, vary significantly 
across Illinois.  The intent of this study is to examine the spatial and economic conditions 
necessary for introducing bioenergy crops into the Illinois landscape.  In this paper, we develop a 
spatial dynamic model to explore the process by which individual farmer agents optimize profits 
through crop selection and cost minimization.  This dynamic agent-based modeling approach 
will allow us to determine the optimal spatial arrangement of crops throughout Illinois as it is 
influenced by several factors, including the use of subsidies, changes in travel costs and crop 
demand, and the introduction of new ethanol production plants.  This article discusses model 
development and specification, and outlines future calibration procedures and scenario tests that 
will be formalized in future work. 
 
Keywords: Land use change, bioenergy crops, renewable energy, spatial dynamic modeling, 
geographic information systems (GIS), agent-based modeling  
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Introduction 
 
Biomass can contribute to a variety of energy uses, including electricity production 

through incineration and refinement into biogas biofuels, including ethanol and biodiesel 
(Rosillo-Calle et al. 2006). On the global level, about 79% of all renewable energy is generated 
from biomass, corresponding to 10.4% of global energy use (in comparison, nuclear power 
provides 6.5%; The Economist 2007). Bioenergy is intended to be climate-neutral since the 
carbon emitted during energy use has been initially sequestered by plants from the atmosphere.  

Our study examines the feasibility of introducing alternative biomass energy sources in 
Illinois. In particular, we examine two promising high-yield perennial grasses, miscanthus 
(Miscanthus giganteus) and switchgrass (Panicum virgatum), both of which are expected to play 
major roles as energy crops in the Midwestern United States.  In order to examine patterns of 
land allocation among competing agricultural uses, we create and implement a spatially extended 
agent-based model that simulates the decisions of individual farmer agents throughout Illinois.  
Here, we intend to simulate the cultivation of four crops: miscanthus and switchgrass, which are 
harvested exclusively for bioenergy production, and corn and soybeans, which are used for both 
traditional and bioenergy purposes. 

To provide a tool for decision-making in multi-actor environments, the project builds on 
an agent-based modeling approach developed for applications in economic and environmental 
management (Scheffran 2000; Scheffran and Pickl 2000; Ipsen et al. 2001; Scheffran 2002; 
Billari et al. 2006; Scheffran and Leimbach 2006). Additionally, this agent-based perspective on 
markets for biomass crops can simulate the boom and bust associated with changing agricultural 
prices and the over- or under-supply that often ensues. 

We begin with a discussion of the bioenergy potential in Illinois and background 
information on the proposed bioenergy crops.  Next, we discuss our data collection and 
processing efforts, followed by the creation, implementation, and testing of the farmer agent 
model.  Future work will outline a series of policy tests, and will include a section detailing our 
conclusions and the implications of this research.  
 

Bioenergy in Illinois 
 

A study by Bournakis et al. (2005) analyzed economic impacts of 1% annual increases in 
the fraction of electricity generated from renewable resources, reaching at least 8% in 2012 and 
16% in 2020. This study concluded that meeting these targets by 2020 would require 
construction of renewable energy facilities capable of delivering about 12.5 Terawatt hours 
(TWh) in 2012 and about 28 TWh in 2020.  While these figures are quite high, Bournakis et al. 
(2005) noted that Illinois has considerable wind energy, biomass, and biowaste resources that 
could potentially be used to meet these targets. Brower et al. (1993)  has also concluded that 
“homegrown biomass energy could create jobs in Illinois, keep energy dollars in state, reduce air 
pollution and soil erosion, and provide many other environmental benefits, all at competitive 
costs.” Bioenergy crops also have the potential to not only displace coal in power plants and 
thereby reduce carbon emissions, but they also have a significant potential to sequester carbon in 
the soil in Illinois (Dhungana 2007).  One popular method of bioenergy usage is the conversion 
of biomass into ethanol, an option that carries considerable economic and political weight within 
Illinois and is likely to experience rapid future growth.  By the end of 2006, there were 110 
ethanol refineries in operation and 73 under construction in the U.S. (Renewable Fuels 
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Association 2006). By end of 2008, the ethanol production capacity will be an estimated 42 
billion liters per year and by 2030, it is estimated that ethanol may replace 30% of the current 
total petroleum consumption (Perlack et al. 2005). 
 Energy crops comprise a variety of perennial grasses and trees and are often produced 
using conventional agricultural practices. Perennial crops have the potential to improve 
environmental quality due to lower fertilizer requirements than corn and soybeans farmed under 
traditional practices. Additionally, extensive perennial root systems and winter harvest may also 
improve water quality, decrease soil erosion and increase soil organic matter.   Here, we discuss 
two potential bioenergy sources that have been proposed to augment the use of corn in ethanol 
production, switchgrass and miscanthus. 

Switchgrass (Panicum virgatum), also known as tall panic grass, Wobsqua grass, wild 
redtop, or thatchgrass, is a warm season grass that has historically been a dominant species of the 
central North American prairie.  Switchgrass was determined to be a strong candidate crop for 
bioenergy production based on its resilience in poor soil and climate conditions, rapid growth 
characteristics and low fertilization and herbicide requirements (McLaughlin and Kszos 2005). 
According to a recent review, biomass productivity of switchgrass ranges from 9.9-23.0 t ha-1 in 
research trials, with an average of 13.4 t ha-1. Several studies (McLaughlin and Kszos 2005; 
Perlack et al. 2005) assume that the rapid increases in switchgrass yields will continue, with 
innovative breeding efforts generating 20 t ha-1 switchgrass yields, an increase of 60 percent, by 
2030.  

Miscanthus (Miscanthus giganteus) is a perennial grass from East Asia that is genetically 
similar to sugar cane. The crop can photosynthesize well at low temperatures and attain high 
yields with low amounts of nitrogen input.  Like switchgrass, miscanthus has been shown to be 
effective at carbon sequestration and soil quality improvement. Its utility for energy production 
has been explored in extensive test trials (Heaton et al. 2006) which indicate harvestable 
miscanthus yields range from 10-40 t ha-1 throughout Europe.  In 2004 and 2005 miscanthus tests 
trials in Illinois, dry matter per unit area was significantly greater than for switchgrass.  Peak dry 
biomass production of Miscanthus was highest in central Illinois (60.8 t ha-1 average), and 
decreasing to an average of 48.5 t ha-1 in southern Illinois, and 38.1 t ha-1 average in northern 
Illinois (Heaton et al. 2006). Earlier trials with miscanthus demonstrated little nitrogen 
contribution to runoff water and an overall decrease in water use (Beale and Long 1997; Beale et 
al. 1999).  

The considerable variation in miscanthus yields is largely due to Illinois’ North-South 
orientation, which leads to high levels of heterogeneity in soil quality, climatic conditions, and 
precipitation.  For example, high soil temperatures and soil moisture coupled with few frost days, 
make southern and central Illinois generally more suitable to biomass crop production than 
northern Illinois (Heaton et al. 2006). Although it may be environmentally suitable, the 
attractiveness of biomass crops may be lower in central Illinois since the region produces corn 
and soybean yields that are much higher than in southern Illinois.  This leads to land competition 
within the region.  Additionally, the cost of transporting biomass from production regions to 
local power or ethanol plants may be significant and needs to be considered. Therefore, the 
production of biomass is more likely to be profitable (and therefore successful) in areas closer to 
the demand centers.  

The profitability of cultivating specific crops varies significantly throughout space.  
Given this spatial heterogeneity, any study examining the viability of bioenergy sources must 
recognize that choosing among the alternatives is not an “either/or” alternative, but rather a 
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matter of finding a mix of biomass crops that can be successfully harvested in a given area. 
Finding this mix means determining the spatial pattern of land that should be allocated to 
traditional agriculture and to biomass crops.  Our study examines the feasibility and dynamics of 
introducing alternative biomass energy sources in Illinois using an agent-based, spatially explicit, 
model of farmer decisions to produce and harvest bioenergy crops.   

Using geographic information systems (GIS) data on crop yields, agricultural land 
availability, and agricultural costs, we simulate the profitability of farmers based on their 
selected mix of crops.  This mix generates revenue based on crop prices (determined by the 
relative supply from all other farmers simulated in the model), as well as costs associated with 
cultivating certain crops within different regions in Illinois.   Farmers can then optimize their 
profit potential by changing their crop mix on a yearly basis in order to take advantage of more 
profitable crops.  This model allows us to identify areas where it may be profitable to switch 
from conventional agriculture to bioenergy crop production. We focus our attention on the 
potential for cultivating miscanthus, as previous work has shown that it can be grown 
productively throughout Illinois and that it would be cost-effective to transport miscanthus yields 
to local processing plants. Our goal is to assess the conditions under which this may be the case, 
including an analysis of the role of market price and critical transportation distance to the next 
power or ethanol plant.  We begin by discussing the data used to inform and parameterize our 
model. 

 

Data Collection and Processing 
 
Geographically referenced agricultural data were collected for the State of Illinois using a 

variety of sources.  We begin by selecting an analysis unit size that facilitates the simulation of 
farmer behavior while maintaining computational tractability.  Ideally, this would involve the 
collection of high resolution geographic data on individually controlled farms.  However, data 
delineating farms or farm ownership is not available for the entire state of Illinois.   

Given the resolution of several of our datasets, we select a unit of analysis corresponding 
to the size of one township.  A township is a land unit originally created by the Public Land 
Survey System under Thomas Jefferson and is commonly established as a 6 x 6 mile area.1 
Although this unit size (which becomes our model cell size as described in the next section) is 
somewhat large, it stands as an important starting point for modeling farmer behavior.  

 

Agricultural Land Use Data 

 
We began by generating a land use map for the State of Illinois using U.S. Department of 

Agriculture (USDA) National Agricultural Statistics Service (NASS) Cropland Data Layer.  Like 
most land use and land cover information, this data is collected annually using satellite imagery, 
specifically from the Thematic Mapper instrument on Landsat 5 and the Enhanced Thematic 
Mapper on Landsat 7 (Jensen 2000). The layer is aggregated to 13 standardized categories with 
an emphasis on agricultural land cover. Classification decisions are based on extensive field 
observations collected during the annual NASS June Agricultural Survey (NASS 2006).  NASS 
uses broad land use categories to define land that is not under cultivation, such as non-

                                                 
1 Townships can be divided into 1 by 1 mile sections, which can be further subdivided into quarter sections and 
quarter-quarter sections.  This is commonly the basis of legal definitions of land delineation throughout the Midwest 
and parts of the Western United States. 
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agricultural, pasture/rangeland, waste, wooded, and farmstead lands.  Here, the classification 
accuracy has been found to be approximately 85% to 95% correct for agricultural-related land 
cover categories.  The reference list of the categorization codes and land covers for IL is shown 
in Table 1. Although this data contains accurate information on land cover, no data identifying 
the land holdings of individual farmers is reported or derivable from this data layer.  

 

Table 1: Land classification of USDA-NASS Cropland Data Layer for Illinois 

 
Classification 

Code 
Land Cover 

Potential Land for 

Energy Crops 

0 No Data  

1 Corn X 

4 Sorghum X 

5 Soybeans X 

24 Winter Wheat X 

25 Other Small Grains & Hay X 
26 Double-Cropped Win Wheat/Soybean X 

28 Oats X 

36 Alfalfa X 

43 Potatoes X 

44 Other Crops X 

54 State Code 564, Other Crops X 

61 Idle Cropland/Fallow X 
62 Pasture/range/ Non Agriculture  

63 Woodland  

81 Clouds  

82 Urban  

83 Water  

87 Wetlands  
88 Grassland  

 
Due to the discrepancy of the ground resolution of this base agricultural land use map (30 

by 30 meters) and the resolution selected for this project (6 by 6 miles), the land cells on the base 
map were aggregated using the ESRI ArcToolbox GIS software (ESRI 2006).  Here, the fraction 
of the agricultural land that can be used for growing bioenergy crops (marked with ‘x’ in Table 
1) is estimated for each 36 square mile aggregate cell.  Figure 1 reveals the heavy row crop 
agriculture in Central Illinois. 
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Figure 1: Agricultural Land in Illinois 

 

 
Illinois Crop Yield Data 

 
Soybean and corn production data were taken from the Illinois Crop Yields Historical 

NASS Database, which lists wheat, corn, and soybean yields for each county in Illinois between 
1972 and 2004 (Sherrick 2005).  A geographical distribution of yields was taken by taking a five 
year average of yields during a representative period between 1997 and 2001.  This data was 
converted from bushels per acre measurements to metric tonnes per hectare using conversion 
constants from the Canada Grains Council 1999 Statistical Handbook (Canada Grains Council 
1999).  Since this data was collected at the County level, which is a lower resolution than our 
analysis, we performed a GIS spatial interpolation through a geostatistical analysis known as 
Kriging (spherical model; O'Sullivan and Unwin 2003).  This technique interpolates the value of 
a variable at unobserved locations from values at nearby known locations, thereby allowing us to 
create a fairly accurate and continuous map of soybean and corn yields throughout Illinois at the 
township resolution (Figure 2). 
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Figure 2: Illinois Corn and Soybean Yields (1997-2001 Avg.) 

 

  
Soybean raw county data Soybean spatially interpolated data 

  
Corn raw county level data Corn spatially interpolated data 

 
Given that switchgrass and miscanthus have not been planted extensively in Illinois (or 

elsewhere in the United States, for that matter), information on their growth patterns and 
harvesting costs is still relatively sparse.  Potential miscanthus and switchgrass yield estimates, 
based on soil quality, climate, and other environmental conditions, were obtained from recent 
work by Khanna et al. (2005), and were aggregated to the township resolution. Likewise, 
estimates of the harvested biomass fraction actually taken off the field (rather than left to 
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enhance soil quality) are 67% for miscanthus, 80% for switchgrass, and 98% for both corn and 
soybeans. 

 

Figure 3: Miscanthus and Switchgrass Yields 

 

  
Original miscanthus/switchgrass data Aggregated miscanthus/switchgrass data 

 
Source: Khanna et al. (2005) 

 

Harvest Production and Cost Data 

 
The value of production of corn and soybeans is estimated from the Illinois Crop Yields 

Historical NASS Database (NASS 2007), from which the average ‘value of production,’ the 
average amount of soy and corn sold multiplied by the average selling price, was calculated for 
2000 through 2006.  During this period, Illinois produced an average $2.604 billion worth of 
soybeans $4.072 billion worth of corn.  

Harvest cost data for corn and soybeans were collected from the Illinois Farm Business 
Farm Management Association through the University of Illinois Farm Decision Outreach 
Council (FARMDOC 2007), which maintains cost records for corn and soybean back to 2001.  
These costs were divided into direct (fertilizer, pesticides, seed, storage, drying, crop insurance), 
power (machine use/lease/depreciation, utilities, fuel), and overhead (labor, building 
repair/rent/depreciation, insurance) costs.  Here, harvest costs within Illinois vary by region, with 
the data being separated into northern, central (high and low productivity), and southern regions 
within Illinois (Figure 4).  A six year average for each region was taken using 2001-2006 cost 
data, while high and low productivity areas were averaged in central Illinois.   
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Figure 4: Illinois Harvest Cost Regions 

 

 
Source: FARMDOC (2007) 

 
Miscanthus and switchgrass costs were estimated from the Illinois Interactive Agronomy 
Handbook (Hoeft and Nafziger 2006) based on similar, well established crops and were broken 
into capital, labor, and material cost categories.   

This data collection and adjustment process yields four GIS maps showing expected 
yields for miscanthus, corn, switchgrass, and soybean crops throughout the State of Illinois.  
These maps are then used as geographically contextual input into the dynamic bioenergy model.   

 

Model Design and Structure 
 

System Dynamics and Agent-Based Modeling Frameworks 

 
Understanding the dynamics of biofuel crop growth in Illinois is hindered by several 

factors.  First, heterogeneous environmental factors across the State create a non-uniform 
environment for growing and cultivating crops of all types.  Second, farmers are responsive to 
market signals that depend heavily on the ability and willingness of other farmers within the 
State to plant and cultivate biofuel crops.  As a result, farmers act as agents, within a network of 
other agents, whose aggregate decisions can significantly alter the chances of biofuel crop 
success.  These decisions are beholden to systemic delays, as well as complex spatial feedback 
effects due to strong environmental heterogeneity.  In order to understand the complicated 
structure of this system, it is important to simulate the system as it is rendered spatially and 
dynamically.  Moreover, it is important to understand how the individual decisions of farmer 
agents can impact the behavior of agriculture in the State as a whole. 

Although they are empirically useful, long-term studies or experiments are often difficult 
to perform when observing complex ecological and economic systems, particularly when 
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attempting to understand the possible future behavior of systems for which limited information is 
available.  Here, representative models can help to fill knowledge gaps and assist in decision-
making and policy-forming activities (Costanza and Voinov 2001).   

While there are a variety of methods for addressing these questions, agent-based 
approaches have been shown to be particularly useful in understanding the behavior of a large 
number of agents as they make decisions and take actions on multiple levels (Billari et al. 2006).  
Moreover, multi-agent modeling techniques are also valuable for explaining how individual 
actors can adapt to system constraints through learning and negotiation processes (Kaitala and 
Munro 1995; Dockner et al. 2000; Scheffran et al. 2006).  Although this type of modeling is 
quite advantageous, many agent-based modeling techniques tend to be quite technical and 
somewhat difficult to communicate to non-modelers.  Here, we turn to system dynamics 
modeling techniques, a set of powerful simulation modeling tools that are effective at exploring 
systems as well as communicating research results.  The approach facilitates involvement of 
stakeholders in model development, criteria setting and validation (mediated modeling, van den 
Belt 2004) 

Over the last fifty years, the system dynamics modeling methodology has grown into a 
robust approach of simulation modeling that explicitly considers the information feedbacks 
governing interactions within systems.  The capabilities of this particular technique have proven 
to be very useful in aiding policy decisions in industrial, social, and scientific systems (Forrester 
1961, 1969, 1972; Ford 1999; Sterman 2000; Guo et al. 2001). 

One advantage of this simulation modeling paradigm is that models can be easily 
communicated to a diverse audience.  System dynamics models are commonly created and 
analyzed using an easily-understandable graphical programming language, thereby abstracting 
away many highly technical and mathematical aspects of the underlying differential equation 
models (see Ford 1999 and Sterman 2000 for more information on system dynamics).   

As a result, using system dynamics as an educational tool has increased significantly 
(Costanza and Voinov 2001).  This facet of the system dynamics methodology differentiates it 
from the technical rules of spatially arrayed Cellular Automata (CA) models, as well as other 
types of mathematical approaches to simulation modeling (see Wolfram 1994 for more on CA 
modeling).  Although there have been several studies over the last several decades that 
incorporated spatial issues into system dynamics models, only recently have techniques been 
developed for explicitly representing dynamics as they occur in spatially extended systems 
(Maxwell and Costanza 1997; Deal and Schunk 2004).   

We base our modeling technique on the structural framework of the Spatial Modeling 
Environment (SME), a software package created at the University of Maryland intended to 
bridge dynamic and spatial  modeling (Maxwell and Costanza 1997; Voinov et al. 1999).  In 
SME, a system dynamics model is replicated and embedded in spatial array of uniform grid cells, 
each of which are locally parameterized by GIS data in order to create a matrix of spatially 
relevant system dynamics models (similar to a GIS raster format).  In the past, this has been 
useful since each cell (which acts as an individual agent) can gain information and material from 
neighboring cells, thereby expanding beyond the ability of traditional system dynamics software, 
such as STELLA® (http://www.iseesystems.com/) or Vensim® (http://www.vensim.com/), to 
simulate spatial variation through replicated models.2  However, while the placement of each 
farmer within the landscape is important because it affects crop yield, the position of farmers 

                                                 
2 Indices (Vensim) and array functions (STELLA) both allow users to rapidly incorporate multiple, identical 
structures into a system dynamics model.  
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within a set of neighboring cells is irrelevant; farmers harvest and sell crops on a market that 
extends well beyond their neighborhood within the Illinois landscape.  As a result, we borrow 
from SME’s structural framework (without actually using it) to create a new system that indexes 
the position of individual farmers in the landscape as well as their crop yields and costs. 

Development of a spatial-dynamic model of biofuel cultivation began with the creation of 
a dynamic model representing a single agent (or farmer) in the Illinois landscape.  In order to do 
this, we utilized the STELLA iconographic modeling software (for a description of STELLA see 
Costanza and Voinov 2001).  We construct this model to focus on several important factors, 
including harvesting, prioritization of land devoted to individual crops, investment costs 
associated with cultivation, and farmer profit based on the mix of crops raised and their market 
prices.  Figure 5 depicts the Miscanthus sector of the model, one of four crop-specific, but 
structurally identical, sectors.  This sector models the ability and willingness of an individual 
farmer to grow, harvest, and profit from farming a mix of crops that they have chosen. 

 

Figure 5: Miscanthus Sector of the Biofuel Model 

 

Per hectare Misc 

BiomassYield

Cumulativ e Yield 

Misc
Yearly  Harv est Misc

Misc Yield

Map Input

Misc Rev enue

Biomass Fraction

Harv ested Misc

Hectares Av ailable

Harv est Misc

Deriv ativ e of  

Misc Prof it Function

Total Unit Cost Misc

Misc Price

Misc Harv est 

f rom All Cells

Agriculture Area

Map Input

Priority  f or Misc

Total Consumption of  Misc

Per hectare Misc 

BiomassYield
Hectares Av ailable

 
 
Here, the harvest (h) of each of the four simulated crops (index k) is given as,  

 

h
k
 = ABy

k
 f 

k
 r

k  
Equation 1 

 
Here, A is the available arable land area (hectares), By

k is the biomass yield per hectare 
(map input),  f k is the fraction of biomass growth that is actually harvested (several crops require 
that stubble be left on the field to aid in the growth of next season’s crop), and rk is the ‘priority’ 
given to crop k which is a unit-less fraction that, when multiplied with A, describes the area of a 
farmer’s land that will be planted with a given crop.  Given that rk is the fraction of land in each 
crop, it follows that Σ r

k
 = 1 (the sum of all land fractions is the whole).  Priority is a key 

variable, in that it determines the extent to which farmers cultivate multiple crops.   
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Figure 6: Total Profit Calculation 

Miscanthus Revenue
Soybean

Revenue

Switchgrass

Revenue
Corn Revenue

Capital

Change in Capital

Total Investment Cost

Miscanthus Cost

Profit

Switchgrass Cost

Soybean Cost

Corn Cost

 
 

In order to calculate farmer revenue and profit for each crop, we need to estimate crop 
market prices and investment costs. We use the equilibrium price function derived in Scheffran 
(2006) which is the ratio between the funding Dk that all consumers together are ready to spend  

crop k (demand), and the total harvest hk = Σi hi
k over all farmers i (supply): 

 

k

k
k

h

D
p =   Equation 2 

 
Since price increases with demand and decreases with supply, this function combines the 

demand and supply relationships in market equilibrium. Thus, market prices for each crop are 
dependent on the total harvest supply, thereby requiring information from all agents.  The 
function  

 

∑∑ 







+−=+−=

k

k

i

k

i

k

i

k

i

k

ik

k

ii

k

i

k

k

i hsArch
h

D
SChpV  Equation 3 

 
calculates the net profit for each farmer i from selling the harvest hi

k of each crop at a market 
price pk, yielding revenue pk

hi
k
, diminished by the invested cost Ci to cultivate all of the crops, 

where ci
k is the per hectare unit cost of harvesting for each crop.  Si = s

k
 hi

k is the “political” 
revenue from biofuels subsidies and carbon credits both of which are assumed to be 
proportionate to harvest (sk is a US$ per ton unit subsidy). Capital accumulation occurs when 
revenue exceeds costs (positive profit) and depletion occurs when costs exceed revenues 
(negative profit). 
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Figure 7: Crop Production Cost Calculation 
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Costs are conceptualized as crop-specific, per-hectare unit costs that are accrued over the 

entire land area available.  Here, we split unit costs into direct (cm; fertilizer, pesticides, seed, 
etc.), power (cp; machine use/lease/depreciation, utilities, fuel, etc.), and overhead costs (ch; 

labor, building repair/rent/depreciation, insurance).  These costs are then multiplied by the 
amount of land in the given crop (rk

A) to find the total investment costs for each crop k.  These 
relatively simple formulations for calculating crop harvests, market prices, and farmer profits are 
duplicated for each of the four crops.   

The primary source of dynamics within this model comes from shifting farmer decisions 
about the type and extent of their crop mix.  Here, finding the right mix of crops is based on the 
profit farmers gain or lose from changing their relative priorities.  In order to calculate how profit 
changes as priority changes, we take the derivative of the profit function Vi for each crop and 
farmer with respect to crop priority ri

k: 
 

2
( )

( )

k
k k k k k k k ki

i i iy i i i i iy i ik k

i

V D
v A B f h h c A sB f A

r h

∂
= = − − +

∂
  Equation 4 

 
This demonstrates that marginal profit declines with an increasing total harvest. By using the 
derivative to formulate change in crop choices, farmers are seen to iteratively shift their 
investment in crops as they find crops that gain them higher profits. This decision model can be 
thought of as a gradient approach to shifting farmer priorities towards growing profits. In this 
case, farmers test how quickly small changes in the amount of planted crops can affect their 
profit on a yearly basis.  If one crop yields a high rate of change, it behooves the farmer to 

increase the priority of that crop, while lowering the priority of other, less profitable crops.  νi
k 

represents the change in profit from crop k for each unit increase in priority for that crop which 
also increases with demand. 

Finally, we move on to the calculation of crop priority, shown in Equation 5.  In many 
cases throughout Illinois (and the rest of the Midwestern U.S.), farmers invest their entire land 
area in one crop, usually either corn or soybeans.  However, as biofuels are introduced into the 
market and government incentives begin to make cultivation of alternate crops viable, this may 
change.   

Since the individual farmer is largely at the whim of market prices, their main tool for 
enhancing their own profit potential is the mix and extent of crops they produce.  Here, change in 
corn priority is represented by a differential equation, the level of which adapts according to the 
profitability of that crop as given by: 
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k l l

k i i i
k ki l

i i i l

i

l

v r v
dr

r r
dt v

α

 −
 

= =
 
 
 

∑

∑
&  Equation 5 

 

where αi is the rate at which farmers i can change their crop mix which is assumed to be the 
same for each crop k, ri

k
 is the priority they are already placing on crop k, and vi

k
 is the change in 

crop profit based on a change of priority for that crop.  The term l l

i i

l

r v∑  represents the priority 

weighted average of the marginal profit for each of the crops.  Summing all of these gains 
together represents the average marginal profit from a crop based on the crop’s priority relative 
to other crops.  Since the priorities initially sum to one, this function increases priority ri

k if vi
k is 

greater than this average priority.  If vi
k is less than this weighted average, then this function 

decreases priority ri
k.  This function is then normalized by the sum of the profit derivatives 

l

iv∑ .  This “evolutionary game” (Hofbauer and Sigmund 1998) among competing crops also 

ensures that the sum of all priorities (crop land fractions) is equal to one, the entire farming area 
(Σ ri

k=1). 

Although, the farmer adaptation rate α is unknown, empirical tests using other, well 
established crops could likely be used to estimate how long farmers typically take to retool their 
operations.  We estimate the adaptation rate as 1/10 years for all farmers, although this value can 
be adjusted on either an individual or regional basis.    
 

Extending the Biofuel Model Spatially 

 
This model, including the crop priority sector, profit and cost calculation sectors, and 

individual crop harvest and price sectors, simulates the behavior of an individual farmer agent.  
The lack of direct feedback between crop harvest and crop price in Figure 5 means that an 
individual farmer can only influence crop prices indirectly through their contribution to the total 
market supply of a crop.  This model is arrayed in a 37 x 65 grid, with 1568 active grid cells 
representing individual farmer agents (the size of which represents one township) within the 
State of Illinois (Figure 1).  Using a set of Python scripts (http://www.python.org/) developed for 
this project, every cell within the state was given a unique identification number, while input 
maps were processed such that each cell’s spatial data values were linked to that cell number 
within a standard, non-spatial database.  Equations from the STELLA model were then brought 
into Berkeley Madonna (http://www.berkeleymadonna.com/), a highly efficient differential 
equation analysis package with powerful indexing features.  Model outputs were then processed 
through another set of Python scripts to yield a set of GIS maps describing change within each 
cell over the length of the simulation.  By viewing and analyzing the output in this format, we 
can better understand the spatial dynamics of biofuel crop growth in Illinois.  
 

Planned Calibration and Scenario Tests 
 
Future work will calibrate the model based on a corn and soybean mix throughout the 

State of Illinois.  To adjust the model to the initial conditions without switchgrass and 
miscanthus, we use data on the production, price and distribution of corn and soybeans in Illinois 
(Sherrick 2005; FARMDOC 2007; NASS 2007). The actual fraction of corn and soybeans 
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determines their initial priority pk, their amount of production is used to calibrate the production 
function. After calibration, scenarios will include the integration transportation costs from each 
cell to nearby ethanol plants, as well as government subsidies for switchgrass and miscanthus. 

 

Transportation Costs 

 
The spatial framework will allow us to include the transportation costs to the next power 

plant or ethanol refinery which are subtracted from the profit function for each farmer. The 
transportation costs are calculated as the product of a constant per ton-mile charge and the 
amount of deliveries, plus the return trip cost. Using the approach developed in Khanna et al. 
(2006), the cost (originally in 1983 $ and adjusted to 2007 US$) of transportation of switchgrass 
or miscanthus per t-km are: $(1.12+0.07d) where d is the round trip distance in km between the 
on-farm storage area and the power plant. Figure 8 shows the location of existing ethanol plants 
in Illinois and the distance to these plants, which determine the transportation costs and are 
included in the cost calculation as an additional GIS layer. 

 
Figure 8: Locations of and Distance to Illinois Ethanol Plants 

 

A. Road network and ethanol plant map B. Current distance to ethanol plants 
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Subsides and Carbon Credits 

 
To study the impact of government policies, we also include the possibility of taxes, 

subsidies and carbon credits, both being proportionate to the amount harvested and added to or 
subtracted from the farmer profit functions. Since switchgrass and miscanthus are perennial 
grasses that can store carbon in the soil, we will also test the effects of earning additional profits 
proportionate to the carbon stored through established carbon trading markets. The work of 
Dhungana  (2007) will provide the basis for estimating carbon storage rates and prices.  

Potential scenarios may be analyzed within the framework of our model include: 
 

1. Increases in subsidies per biomass unit until switchgrass and miscanthus begin to emerge.  
This allows us to estimate the relationship between subsidy levels and biomass crop 
harvest/price. 

2. Reduction in costs through farmer ‘learning,’ meaning that unit costs could decline with the 
amount produced. 

3. Modifications to farmer response rates α or allowing for different αI among farmers to test 
for the relevance of adaptation speed. 

4. Using fuel price as an exogenous variable, following a continuously growing gasoline price. 
5. Testing for the possible impact of climate change by an increasing temperature throughout 

the century.  This would modify yield patterns. 
6. Testing different urbanization scenarios, thereby lowering the amount of arable land. 
7. Introducing new ethanol plants and bio-refineries, thereby altering the transportation costs for 

nearby cells. 

 

Conclusions and Implications 
 
The goal of this work is to assess environmentally responsible and economically efficient 

agricultural land use options for the widespread implementation of renewable bioenergy crops. 
In order to establish a secure and economically cost-effective infrastructure for the energy supply 
of Illinois, our research identifies current and future potentials for renewable energy resources 
and uses in Illinois, while identifying obstacles and opportunities.  After scenario testing, this 
work may provide a framework for examining the availability, feasibility, economic viability and 
sustainability of bioenergy sources in the Midwest.  
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