
Do we ever halt when solving complex problems?
Looking beyond the interface horizon

Key Theme
SYSTEM DYNAMICS CONTRIBUTIONS TO THEORY BUILDING IN THE SOCIAL

AND NATURAL SCIENCES 

Florian Prange

ProjectComplexity

Tresckowstraße 52

20259 Hamburg

florian.prange@projectcomplexity.de

Paper presented at the 24th International Conference of The System Dynamics

Society, July 23 – 27, Nijmegen

1



Do we ever halt when solving complex problems?
Looking beyond the interface horizon

ABSTRACT

Why is it  that  some problem solving tasks in organisations – though well
posed in principle – turn out to be incredibly difficult or impossible to solve
when taken on in practice? Why is it that after having followed an otherwise
ordered  and  predictable  path  we  often  find  ourselves  suddenly  on  an
increasingly turbulent stretch of road where we realise – to our horror – that
our  ability  to  intervene  in  the  unfolding  chaos  is  rather  limited?  Yes,
complexity  theory  provides  many  important  insights  into  the  dynamics  of
complex organisational systems and – over the years – we have become
familiar  with  terms  like  bifurcation  points,  strange  attractors  and  phase
transitions.  However,  given  a  concrete  organisational  or  engineering
problem,  their  use  remains  largely  metaphorical.  In  fact,  the  complex
dynamics is assumed to be given and no account is offered about its actual
emergence.  This paper,  therefore,  aims to  serve as a kind  of  magnifying
glass  that  helps  us  to  study  the  emergence  of  complex  behaviour  in
organisations. Also, it gives an account why complexity often out-steps us in
many problem solving tasks.

Keywords: Systems, interaction surfaces, combinatorial objects, halting

INTRODUCTION

This paper is motivated by the following simple question: why is it that some systems
(like organisations or engineering projects) interact in specific yet unpredictable ways
while others seem to function remarkably well? Also, why is it that often our analytical
ability seems to be out-paced by the system's dynamics as it evolves in time? 
Those are two relevant questions as we constantly interact with a multitude of systems
in our every day and professional lives. In fact, the way we deal with them and our
decisions to influence their behaviour has often serious consequences which we did not
anticipate  when  we  first  started  acting  as  part  of  the  system.  Now,  of  course  the
discussion  of  organisations  and  management  in  the  light  of  complexity  and  chaos
theory has called into doubt the linear relationship between a body of rules and their
concrete manifestation in a dynamical system (Levy 1994, Phelan 1995, Murphy 1996,
Bardyn et al. 1999, Wheatly 1999). 

While  this  approach has provided a  fresh  and important  perspective  to  look  at  the
management  of  systems,  it  often uses a kind of  argument  by  analogy, namely that
'[c]haos  is  the  science  of  complex,  dynamical,  non-linear  co-creative,  far-from-
equilibrium  systems'  and  since  'organisations  are  in  their  very  essence  complex,
dynamical,  non-linear,  co-creative,  and  far-from-equilibrium  systems,  chaos  is  the
science  of  organisation'  (Fitzgerald  2002:  339).  However,  judging  from  my  own
experience in  industry, while many people are generally quite sympathetic to this idea,
they  attribute  the  emergence  of  complex  behaviour  to  the  human  component,
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interventions from outside the system, or to noise perturbations due to friction. Still they
adhere to the belief that an essentially discrete and finite number of rules exist that,
when properly executed and applied to a well-defined problem solving task, in principle,
would yield the desired outcome (if they would be just left alone!). This is borne witness
by the number of professional bodies that uphold best practice and standard processes
in  their  respective  fields  (e.g.  PMI  –  the  Project  Managers  Institute,  IPMA  –  the
International Project Management Association, INCOSE – the International Council on
Systems Engineering and many others). Also, especially, in the engineering community,
this widely-held belief is supported by the many challenging tasks that could be solved
remarkably well in spite of being non-linear in nature.

This  paper,  therefore,  aims  outline  how  organisational  or  engineering  systems  in
themselves outdo our ability to capture their dynamics regardless of the body of rules
we use to describe them. Also, we contrast them with systems that seem to be immune
to those 'holes' in our understanding of the system. To see this, let us have a look at the
preliminary definition of a system.

STARTING FROM FIRST PRINCIPLES – what is a system?

Put simply,  a system is a set  of  elements together with a set  of  relations that  hold
between  those  elements.  We  might  further  want  to  add  that  a  system  has  to  be
understood as a  dynamic and complex whole that interacts as a structured functional
unit.  It  is thus characterised by the information,  matter  or energy flows between the
elements  themselves  and  the  outside  through  the  system's  boundary.  To  fully
understand  a  system,  therefore,  we  have  to  study  the  interactions  and  processes
between  the  elements  that  comprise  the  whole  and  the  'conceptual  boundary  that
separates one part of reality [our functional unit] from the rest of the world' (Shaw 1981,
p.82).  Figure  1  summarises  the  interplay  between  the  various  conceptual  building
blocks of a system.

Fig 1: The elements (A) interact through a multitude of relations (B) inside the system's boundary (C). A
system usually communicates somehow with the 'outside' (D) thereby making it often difficult to establish
its exact operational confines.

Now,  given  a  well  posed  engineering  or  organisational  problem  we are  often  in  a
position where we deal with systems whose components are essentially well defined
and where the relationship between the components are subject to a familiar body of
rules.  Using  an  electrical  circuit,  as  an  example,  we  happen  to  know the  relevant
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'ingredients'  like  resistors,  wires  and  light  bulbs  etc.  as  well  as  the  necessary
construction principles such as Ohm's law to go about our task. Similarly, using a highly
dynamical system this time, a surgeon performs an operation on an inflamed appendix
using both his knowledge about the human organs and his surgical tools together with a
set of medical procedures.

Thus, to be able to perform a task in a given system requires the knowledge of how the
elements  interact  to  form  a functional  whole  that  somehow differentiates  it  from its
environment.  In other words, how can the elements be put together to form units of
higher complexity?

INTERACTION SURFACES – applying the glue

When building systems it is evident that we do not rely on statistical events to create a
functional whole. On the contrary, the formation of a system follows what Cervén (1985)
has  termed  'strong  cognitive'  processes  between  a  finite  and  discrete  number  of
elements  comprising  different  properties.  What  does  the  somewhat  puzzling term
'strong  cognitive  interaction'  mean?  To  understand  how  individual  building  blocks
combine and recombine (being a nested and recursive process) to function as a unit of
a higher hierarchical level, we have to understand them as being characterised by two
things:  their  properties  and  their  interaction  surface  (ibd.).  The  interaction  surface
describes  the  element's  specific  ability  to  form  combinatorial  bonds.  So,  interaction
between elements can occur, if their mutual interaction surfaces are complementary as
visualised in Fig 2. Of course, an element may have several properties or interaction
surfaces. Now, the term cognitive is used because the interaction implies a specific
recognition between  elements.  This  can  also  be  understood  as  some  kind  of
information exchange between the elements.

Fig. 2: Two elements with properties 'A' and 'B' are characterised by complementary interaction surfaces
that 'recognise' or 'communicate' their fit to form a new unit 'AB'. As such the resulting element may well
exhibit emergent properties. 

While this recognition of mutual interaction surfaces in living organisms, for example, is
carried by biological  processes such as symbiosis,  often our organisational  systems
have got that information on the interaction surfaces already built into their very design.
For example, it is because we know that the software modules A and B interact nicely
that we want them to form a sub-system of our programme; or that it is precisely that I
know to interact well with Bob that I want him to be part of my project team. Being in
possession of the interaction surfaces of the elements that comprise a given system,
therefore,  is  part  of  any  design  process  and  often  it  provides  us  with  important
conceptual shortcuts. 
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As the interaction of  the  system is recursive and as we are interested in its  actual
evolution,  of  course,  the history of  the system becomes important.  As time evolves,
elements are recombined and new elements of higher  hierarchies are formed, which
gradually lead to an increased interaction within the system. Now, judging from the way
the  elements  recombine in  time,  we might  identify  two types of  systems:  (i)  closed
structures are composed of identical or semi-identical elements with fixed coordinates
and (ii) open structures that either create new elements of higher order or open the
system to the outside (or a combination of the two). Let us now look at what this tells us
from an organisational or engineering perspective.

ON CRYSTALS AND ENGINES– rejoicing in predictability

Let us start with those systems that utilise periodic construction rules to combine and
recombine families of identical parts where the interaction is characterised by surfaces
with fixed or static coordinates. Crystals are an archetypical example to illustrate this
type of  behaviour  as they start  from a unit  cell  and are then  packed in a regularly
ordered, repeating pattern extending in all three spatial dimensions. Likewise, many of
those  systems  that  are  the  subject  of  our  professional  lives  as  project  managers,
engineers or  administrators are characterised by similar patterns aptly embodied by
mechanical artifacts or an efficient and predictable public administration (see Fig. 3).
Notice that systems of this kind may well exhibit non-linear behaviour, critical thresholds
or  turbulence.  However,  our  knowledge of  their  actual  behaviour  helps us to devise
adequate strategies to cope with this, as demonstrated, e.g., by the effectiveness of a
public institution remaining unaffected by the changes or turmoil in the party political
system of a country.

Fig. 3: In (a) the unit cell (in this case a cube as the most symmetrical structure of a crystal) recombines
with identical structures via any of the 6 surfaces. In case of an engine (b) we add versatility to the system
by having families of identical elements with different properties that may also exhibit a wider variety of
interaction surfaces.

Now, what does this tell us about our interaction with a system of this kind? We can, in
principle,  devise  a  mechanism  or  set  of  procedures  (technically  an  algorithm)  that
identifies and checks the number of elements and corresponding interaction surfaces to
then  observe  the  system's  evolution  in  time  as  interactions  occur.  Simulations  or
automatic test routines in the automotive or aviation industry are a good example: Here
we use the system elements  in conjunction with  a description on how they interact
(usually expressed in terms of differential equations) to see how the system projects in
time. Using the crystal in (3a), for example, such a mechanism would have to identify
the interaction surfaces of the unit cell to combine them with additional cubic structures.
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As the system starts interacting, at any given time during the system evolution, say n
iterations, the number of 'checks' to be performed would be given by

max number of interaction surfaces=5n1 .

This is quite manageable, as we would expect, both for us humans as problem solvers
and  for  computers  as  our  preferred number  crunchers. In  terms  of  algorithmic
complexity such a task is  manageable in polynomial time as the size of the problem
(such as the elements or variables that make up the system) increases proportionally to
a multiple of a polynomial. Consequently, in learning theory any procedure to master a
new concept or function would have to adhere to such an upper bound in order for us to
'grasp' it in a realistic time frame (Anthony et al. 1992). Also, systems like (3b) behave
in a similar manner even if they are more versatile in that they comprise elements with
different  properties  and  a  larger  number  of  possible  transaction  surfaces.  Still,  the
number  of  interaction  surfaces  is  limited  by  their  somewhat  static  nature  or  fixed
coordinates. I simply cannot add elements randomly and still expect the whole thing to
work. Thus, the coordinate structure being fixed, serves as a kind of filter that reduces
the  number  from  what  is  combinatorially  feasible  to  something  which  can  be
'realistically managed' which is essentially what we capture by the polynomial as our
upper bound.

So, in dealing with systems of this kind we can keep up with them as they evolve by
having  an  explicit  or  conceptual  mechanism  in  place  that  tracks  and  checks  the
elements as they recombine in time.  Incidentally,  the fact  that  there is a substantial
number of systems that behave broadly in this fashion often (mis)leads us to make the
assumption that, if adding a known element to a functioning system yields a fault, this
must be due to the added element. Knowing that this, alas, is not the case brings us to
the next section

OPENING PANDORA's BOX – enumerating its content

As we have  seen,  there  is  a  large  number  of  important  systems whose behaviour
satisfies some kind of closure criterion. Parts are combined and our knowledge of the
way the elements interact helps us understand or devise the resulting whole as a stable
structure.  However,  elements  may  combine  such  that  they  form  new  interaction
surfaces that open the system to the outside in ways not anticipated. This is due to
either  the  lack of  a  fixed  coordinate  structure  (as can  be  found  in  tumor  cells  that
interact  with  other  cells  indiscriminate  of  their  morphology)  or  because  the  system
boundary itself is  susceptible to change. As such, the recursive process of combining
and recombining may not settle in a stable state, i.e. being combinatorially closed. In
fact, given a system with n elements and, say, families k 1 , k 2 , ... , km of identical parts we
would end up with an upper bound of interaction surfaces given by

max number of interfaces= N !
K 1! , K 2! , ... , K k!

.1

1 The first element can interact with any of the n−1 other elements which in turn may combine with any of
the remaining n−2 elements thus giving n×n−1×...×1=n! . Also, combinations of identical parts are
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Fig 4: Elements A, B, C, D may combine to create a new interaction surface that opens the system to the
outside. While any of the singular elements (1) still remain closed, they may form new links with elements
(3) initially outside the system's boundary to form new structures (4). 

Clearly this behaviour represents a class of problem solving tasks that, in some way,
requires considerably more resources to follow the system's  evolution in time. What
does  this  mean  for  our  ability  to  devise  or  administer  such  a  system?  Unlike  the
previous  case  where  we  ended  up  with  a  manageable bound,  this  behaviour
dramatically  outpaces  anything  polynomial given  a  large  enough  class  of  different
elements. Certainly, presented with one possible instance of the system, we can check
whether  it  is  well-behaved or constitutes a solution to our  problem solving task,  for
example, by inspecting the interaction surfaces. However, as a whole, any inspection
mechanism would be out-manoeuvred in the sense that it can not be mastered in a
realistic time frame. What does this mean, in principle, for our ability to attain a solution
to a given organisational or engineering task?

BEING OUTSIDE OF THE INSIDE – a halting problem for organisations

Let us depict a problem solving task as a sequence of steps to modify a system in such
a way that it moves from an initial state to a more desired state. Of course, we do that
through interacting with the system's elements. Attaining a solution, therefore, would be
equivalent for us to halt in that activity. Note that this way of looking at problem solving
is consistent with the engineering paradigm where we construct devices as a sequence
of discrete steps using our body of engineering knowledge.  Similarly, it applies to an
administrative challenge to reduce the healthcare expenditure below a certain threshold
through  a  political  process.  So,  given  a  description  of  a  finite  number  of  discrete
processes, properly executed, and the initial state of the relevant system, can we ever
determine whether we halt? The alternative, of course, would be to run forever or to be
stopped thanks to an intervention from the outside (such as cutting the losses in what
turnes out to be an ill-fated project). In other words, is the information available to us
inside the system sufficient to determine the outcome? 

The answer is no. This is a direct consequence of the undecidability results for decision
problems in the study of formal systems. Essentially, they ascertain that attributes such
as solvability, provability or decidability are attributes that lie outside of the system and
the corresponding rule set. In fact, all variations of these results have in common that
they speak about the system's ability to speak about itself. This is basically what we do

treated as one so that we have to make sure that the k i! terms do not contribute to the total number of
permutations.
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when we ask ourselves whether we halt in whatever we do. Such a statement, in its
most abstract sense, is of the form “This problem is not solvable in the system”. The
various  proofs  (for  a  comprehensive  treatment  see  Bools  et  al.  1996,  e.g.)  then
establish that if this statement were in fact solvable, it would be solvable in the system,
and  consequently  violate  the  consistency  requirement  of  our  system.  Now,  if  the
statement  “The  problem is  not  solvable  in  the  system”  is  in  fact  unsolvable  in  the
system then, in effect,  the statement would be true in the system. The problem with
that, however, is that we can not express this concept inside the system itself. Another,
more  concrete  instance  of  undecidability  would  be  the  question  whether  any  given
computer programme stops (similar to our remarks on problem solving). Starting with
the assumption that such a programme exists, leads us directly to a contradiction and
we must conclude that a general programme to solve the halting problem cannot exist.
Again,  the attribute  'does halt'/'does not  halt'  is only expressible  outside the system
whereas our rule set lies  inside it.  Would a human be able to determine whether a
programme halts? Let's take a simple programme that writes any given natural number
as the sum of two prime numbers such has 12=57 . Will it ever halt? Well, we don't
know as  the  corresponding  formulation  in  mathematics  (Goldbach's  conjecture)  still
defies all attempts to prove it. So, it makes it difficult to see how humans could solve
the halting problem as we too would have to resort to concepts that lie  outside of the
system.

The  implication  of  the  halting  problem,  of  course,  is  that  we  can  not  answer  the
question whether we will realistically (and principally) ever attain the solution to a given
problem solving task. Put differently, therefore,  we have to get used to the fact  that
often the easiest  description  for  solving problems in complex systems is the  actual
process of solving it. Thus solving the problem is the only way to determine whether we
can solve it. Reformulating this result for standard practices (as propagated by many
fields in organisational theory and practice as mentioned above) would read something
like this: solvability of a given organisational or engineering task is an attribute outside
any of the processes that are guided by a specific rule set. Thus, the systems which we
deal  with as administrators,  project  leaders or managers can only be understood in
terms of their specific context and the local conditions under which they evolve.
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