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Abstract 
Within recent years, agent-based models have achieved growing prominence in several fields of 
study.  Although powerful and expressive for characterizing the evolution of large populations 
exhibiting persistent interactions between individuals and high heterogeneity, agent-based 
methods do not come without tradeoffs.  Such methods are burdened by relatively high runtime, 
lack a formal canonical, declarative, and transparent mathematical semantics, and are often 
challenging to program, understand, calibrate, generalize and validate.  It is therefore important 
to help modelers recognize modeling contexts requiring the full generality of such models.  This 
paper takes a preliminary step in that direction.  Specifically, we built and apply a framework 
that applies the theory of delay embedding and generic algorithms for intrinsic dimensionality 
assessment in order to estimate the intrinsic dimensionality of the trajectory of agent-based 
models.  This dimensionality provides a lower bound on the number of state variables required in 
any model that seeks to reproduce the behavior of these agent based models.  Although results 
are tentative and particularly sensitive to noise, our work appears to indicate that many highly 
descriptively complex agent-based models may give rise to exceptionally low dimensional global 
behavior.  We suggest that there may be opportunities for expressing the behavior of many 
complex agent-based models using state equation models offering much far smaller size and 
greater computational economy.    

1 Introduction 
Recent years have witnessed an upsurge of interest in agent-based modeling.  The interest has 
been particularly pronounced within fields studying the effects of persistent interactions between 
individuals, such as the modeling of infectious diseases and the spread of ideologies, but such 
models have also commanded attention in physiological modeling, marketing, and other areas.  
For systems containing large populations in which the behavior of individuals is better 
understood than the emergent behavior of the populations, agent-based models provide an 
important and expressive tool for understanding the roots of global behavior.  The virtues of 
agent-based models for accurately capturing the effects of population heterogeneity are also 
important [1].   

The benefits of agent-based modeling do not come without significant tradeoffs.  The simulation 
of agent-based models imposes an exceptionally heavy computational burden.  The large and 
distributed state within such models complicates understanding of model behavior.  The absence 
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of a general but precise mathematical foundation for agent-based models greatly limits reasoning 
about such models, and hinders the introduction of more general approaches to model analysis, 
validation, and calibration.  Even if a consistent mathematical framework is imposed for a 
particular model, the large number of parameters of such models typically makes the calibration 
problem underdetermined; as a result, the field still lacks effective general-purpose techniques 
for calibrating agent-based models.  Finally, despite some significant recent advances in 
introducing limited declarative techniques [2], most agent-based models rely heavily on general-
purpose computer languages, which lack basic support for domain-specific semantics such as 
unit checks and tend to obscure the modeling program with a welter of implementation-specific 
detail [3].  The result is that agent-based models are typically less nimble and transparent than 
those built with modern aggregate modeling tools.  In infectious disease epidemiology, the 
complexity and rigidity of agent-based modeling has apparently had significant constraining 
effects on the development of more detailed models of disease spread.   

Given these tradeoffs, practically minded modelers desire understanding to inform basic 
modeling choices – Under what conditions should one modeling approach be used?  Are there 
times when using several approaches make sense?  Are there clear indications as to when one 
approach is necessary, or when an approach cannot be used? 

Several recent contributions have explicitly compared the tradeoffs between agent-based and 
ordinary differential equation (ODE) based methods [1, 4] and mixing  assumptions in network 
models [5].  In the epidemiology area – where for years compartment models and agent-based 
approaches have competed – there is growing recognition of the importance of model pluralism 
[6-8].  [4] demonstrated that aggregate SIR models could accurately capture the dynamics of 
agent-based network models of disease spread for a wide range of parameter values.  While 
effective calibration of the aggregate models often requires execution of an agent-based model, 
the modeling process can be more flexible and informative while working with the more 
aggregate model either following or concurrently [9] with a more focused agent-based model.  
[1] examined the performance and accuracy scaling of agent-based and attribute-based 
disaggregation models as the need to represent population heterogeneity rises.  That work 
demonstrated that as the number of heterogeneity dimensions rise, agent-based disaggregation 
affords faster execution and the ability to representing the dynamics with greater precision.   

This paper continues in the theme of these earlier results in seeking to shed light on the tradeoffs 
between agent-based and ODE-based modeling.  Firstly, we describe a mathematical approach 
we have implemented for studying the emergent, high-level behavior of models.  This 
framework is designed to permit the analyst to look beyond the details of a model’s 
implementation and to examine instead the intrinsic characteristics of its behavior.  Specifically, 
by looking at the intrinsic dimensionality of the model’s behavior, we can gain insight into how 
economically the model describes its behavior, and highlight potential opportunities for 
representing that behavior in a simpler fashion. Secondly, we describe the application of this 
framework to several example model results.  In so doing, we have discovered that several 
descriptively complex agent-based models exhibit exceptionally “simple” (low-dimensional) 
deterministic aggregate behavior, mixed with some stochastics at a local level.  While these 
results are as yet limited to a few examples, they suggest that the global behavior of many 
systems whose descriptive complexity might appear to require representation as an agent-based 
model may admit to extremely high-fidelity expression as low-dimensional systems of ordinary 
or stochastic differential equations.  In light of these results, we conjecture that the success of [4] 
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in identifying a system of ODEs for accurately describing an agent-based model may have broad 
applicability, and perhaps be even more than rule than the exception. 

A few words about the results presented herein.  We believe that this is the first time that these 
techniques (based on dynamical systems theory) have been specifically aimed at analyzing the 
complexity of agent-based models, and systems simulation models more generally.  We believe 
that there are many opportunities for extending and improving upon the early results presented 
here. While we have taken one approach to dimensionality estimation, we believe that there are 
ripe opportunities for application of other approaches.  Another concern is the non-constructive 
nature of our approach:  While our technique can demonstrate that it is possible for a given 
model or system to be represented in a simpler fashion, it does not indicate the specifics of that 
representation.  We believe that there are favorable prospects for applying model order reduction 
approaches to derive the lower-dimensional models.  A number of additional caveats and 
suggestions for innovation are given in Section 4.5. 

The next section of this paper introduces the mathematical background for the two major 
elements of our approach.  Section 3 describes the specific manner in which our approach 
combines these two elements to estimate the intrinsic dimensionality of model behavior.  Section 
4 provides case studies in which we estimate the intrinsic dimensionality of several example 
agent-based models.  Section 4.5 provides some high level comments, and discusses future 
directions for research.  

2 Background 
This section describes the mathematical background for the three key elements of our approach.  
Firstly, Section 2.1 describes the notion of the trajectory of a process in state space, and 
discusses how one of its characteristics – its dimensionality – can provide a lower bound on the 
complexity of models required to realize that process.  Secondly, given that most state spaces 
cannot be directly observed, Section 2.2 discusses how it is possible to reconstruct the state space 
of a highly coupled system using time series information from just a single measurable quantity, 
even in the presence of measurement error.  Finally, Section 2.3 describes how we apply existing 
generic data set dimensionality algorithms in order to estimate the dimensionality of the 
reconstructed state space, without the need to completely reconstruct that state space. 

2.1 State Space Approaches: Concepts and Dimensionality 

2.1.1 State Space Representation 
Regardless of its implementation, a process can in general be characterized as the time evolution 
of some state vector x(t).  For a particular time t0, x(t0) completely characterizes the state of the 
system.  In a purely deterministic system, the value of x(t0) uniquely determines the subsequent 
values of x(t).   

While it is most common to characterize the evolution of each component of the state vector 
explicitly over time (such as is shown in Figure 2), an alternative representation characterizes the 
evolution as a curve (trajectory) in state space (also known as phase space).  The state space 
shares the same dimensionality as the state vector (i.e. x(t) ∈ ℜn) and represents the set of all 
possible state vectors.  Within the representation of a process as a trajectory in state space, time 
is implicit rather than explicit.  Because a purely deterministic system’s state completely 
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specifies the subsequent trajectory of the system, a closed trajectory will indicate a system with 
periodic dynamics. 

In order to illustrate these concepts, Figure 1 depicts an epidemiological model of a disease 
conferring temporary immunity.  Within this model, individuals can either be susceptible (S), 
infectious (I) or temporarily immune (TI1).  Figure 2 shows the time behavior of the state 
variables of that model.   Figure 3 shows1 the evolution of those state variables in within state 
space (ℜ3).   
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Figure 1:  An Epidemiological Model of a Disease Conferring Temporary Immunity 
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Figure 2:  Time Evolution of State Variables 

  

                                                 

1 It is in general is only possible to directly depict the entirety of state space for n ≤ 3. 
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Figure 3:  State Space of a Damped Oscillator 

2.1.2 Intrinsic Dimensionality of a Process 
Although the trajectory traverses the state space, it is not necessarily the case that the trajectory 
will have identical dimensionality to the state space.  In the case above, although the state space 
is 3 dimensional, it can be readily noticed that the trajectory dictated by the model 
parameterization given is only 2 dimensional (i.e. only has an intrinsic dimensionality of 2).  In 
this particular case, a particularly unusual condition holds:  The two dimensional trajectory is co-
planar (falls entirely on a single plan), as can be clearly seen by from a view of the state space 
such as that shown in Figure 4.  The co-planarity in this case reflects the fact that there is a 
conservation of people in the model, and that any of the variables can be expressed as a linear 
combination of the other two.  In other cases, we may have a surface of lower intrinsic 
dimension (a manifold) than the surrounding state space even absent a linear dependence among 
the state variables. 

 
Figure 4:  View of State Space indicating coplanarity of trajectory 

The intrinsic dimensionality of a process’ trajectory is of great interest to modelers, because it is 
an underlying characteristic of the process itself, rather than an artifact of our modeling choices – 
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that is, the particular coordinate system that we happened to adopt when characterizing the 
system.  Regardless of the dimensionality of the state space in which it is contained (or the 
technology by which it is realized), the intrinsic dimensionality of the trajectory indicates the 
number of independent state variables that would be needed in a model to accurately characterize 
capture its dynamics.  This dimensionality is certainly a lower bound on the dimensionality of 
the underlying model system2.  It is possible that a trajectory started with different initial 
conditions may be associated with different trajectories, but in many cases (such as many ergodic 
systems [10]), the dimensionality of the trajectory will be equal to that of the model system as a 
whole. 

If intrinsic dimensionality of a process is low, it suggests that a clever choice of a small number 
of state variables could completely express the time evolution of the system.  By contrast, if the 
intrinsic dimensionality of a process is high, it necessitates a high-dimensional model for 
expressing that behavior with any fidelity.  Emergent behavior of some population that exhibits 
very high intrinsic dimensionality could motivate the use of agent-based models for describing 
the evolution of that population. 

2.1.3 Execution of a Model as Process 
The section above introduced the concepts of state space and intrinsic dimensionality, and the 
implication of intrinsic dimensionality for representation of a process by a model.  This 
subsection extends the above ideas with respect to a particular type of artificial process:  A 
particular run of a simulation model.   

Consider an explicit simulation model.  Regardless of whether this model is realized in a general-
purpose programming language, a system dynamics package, an agent-based framework, or any 
other number of frameworks, that model is associated with some state space.  The dimensionality 
of this state space is given by the count of state variables in the model.  For a “pure” system 
dynamics model (i.e. a model without any fixed delays, pseudo random number generators, etc.), 
the number of state variables is simply equal to the number of stocks.  For an agent-based model, 
the number of state variables will typically be very large – equal to the sum of the number of 
state variables (dynamic attributes) in each agent over all agent populations, plus any additional 
state variables used to e.g. simulate the evolution of the agents’ environment.  For a typical 
agent-based model, the number of state variables will frequently be in the hundreds, and 
sometimes significantly orders of magnitude higher. 

A particular execution of the model is a process associated with some trajectory through the 
model state space.  If this process is associated with an intrinsic dimensionality smaller than the 
dimensionality of the state space (as we saw in the example shown in Figure 4), it suggests that 
there may be some measure of redundancy in the model.  More specifically, the gap in 
dimensionality suggests that the particular parameter settings used, the values of some of the 
state variables can be expressed as a function of the other state variables3 much as coordinate 

                                                 
2 It bears noting here that we speak here of the “model system” in an applied mathematics sense, denoting not just 
the structure and equations, but also the particular parameter values employed. 
3 These minimal state variables could be the same state variables as currently exist in the model, or some other basis 
set of minimal state variables. 
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shifts identified using principal or independent components methods can permit a lower 
dimensional means of describing a seemingly high dimensional statistical data set. 

While the state space dimensionality is an artifact of the particular modeling approach, of greater 
interest here is the intrinsic dimensionality of a state trajectory for this simulation model.  The 
intrinsic dimensionality of a state trajectory of a purely deterministic must be equal to or less 
than the number of state variables within the model (for it to exceed this limit would require 
some additional state to be maintained outside the model).   

Consider a simulation model associated with state space dimensionality DS and a state trajectory 
for that model with intrinsic dimensionality DI. If DS ≈ DI, it suggests that, informally speaking, 
the implemented model fully exercises the complexity afforded by its size and that no “simpler” 
model could adequately capture the dynamics of this model.  By contrast, a case where DS << DI 
suggests that the model at hand may be (but not necessarily is) too complex, and that a 
substantially simpler model may be able to capture some or all of the dynamics expressed by the 
generated trajectory – and potentially all of the behavior possibly generated by this complex 
model for other initial conditions, or even different parameters settings.   

Within this paper, we present a means of estimating of the intrinsic dimensionality of trajectories 
produced by agent-based models, and use that approach to analyze a few particular examples.  
But prior to so doing, we need to formulate some means of assessing this dimensionality. 

2.2 Time Series and State Space Linkage and Embedding 
The previous section has made a case for the value of understanding the state space 
characteristics of processes – particularly their intrinsic dimensionality – in order to gain insight 
into the complexity of models required to adequately represent those processes. 

Unfortunately, it is not obvious how to study the characteristics of state space for either natural 
systems or computer models.  Firstly, for natural systems, we frequently have no direct means of 
measuring the state of the system over time – many components of the state may be 
unobservable.  Secondly, even for artificial systems in which we know all of the state variables, 
the curse of dimensionality restricts us from trying to directly represent the entire state space of a 
large ODE model or – even worse – a medium- or large-scale agent-based model.  Naïve 
representation would require infeasibly large amounts of memory.   

While more sophisticated approaches are possible, this section introduces an approach for 
reconstructing the characteristics of a process’ trajectory through state space that can be applied 
to either natural systems or formal mathematical models, and which does not depend on either 
full measurability of the state vector or explicit representation of the entire state space.  
Specifically, we describe a known approach for reconstructing the coordinates of points in the 
state space trajectory of a process using periodically sampled time series data from a single 
observable quantity determined by the system.   

Within the first subsection, we review the basic intuitions underlying the seemingly puzzling 
connection between lagged samples and state space.  The second subsection briefly describes 
Taken’s Embedding Theorem, which formalizes this linkage, and describes a general technique 
for reconstructing the state space of the original system using sampled data.   
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2.2.1 Basic Intuitions 
Most complex systems exhibit some degree of coupling between many components of the state 
vector.  For some complex systems (including those characterized by many system dynamics 
models), there is pronounced coupling in the time evolution of different components (stocks).  
As a result, the evolution of one component of the state vector is likely to be impacted by the 
values of many other components.   

Suppose that we have two different intervals of time of equal duration IA= [tA, tA+kΔt] and IB=[tB, 
tB+kΔt] in which a particular component of the state vector x↓i(t) is known to take on 
corresponding successive values over time (i.e. x↓i(tA+jΔt)=x↓i(tB+jΔt) for 0≤j≤k.  If x(t) is 
generated by a highly coupled system, it suggests that not only is this particular component of 
the state vector similar for these sequence, but the other values of the state vector are likely to be 
similar as well.  Were the state to differ in these other components during intervals IA and IB, we 
would expect these other components of the state vector to “throw off” the value of component i 
during that time as well – eventually, the coupling would allow these differences to manifest in 
the value of component i.  The longer the sequences that are identical with respect to component 
i (i.e. the larger the values of k), the more confident we would be that the underlying states are 
similar during intervals IA and IB. 

Phrased another way, if we wanted to predict the future values of component i based on its past 
values of that component, within a system of bounded dimension, we would expect that we could 
do so using only a finite memory.  The higher the dimensionality of the system, the greater the 
number of past values of component i we would have to match in order to have confidence of the 
next value of that component.  

While strictly informal, these intuitions turn out to be quite correct – in a highly coupled system, 
the time evolution of just one component can give us hints regarding the structure of the 
underlying (and frequently unobservable) state space.  The next section discusses the 
formalization of this idea in Taken’s Embedding Theorem. 

2.2.2 Taken’s Embedding Theorem 
In a celebrated result, Mathematician Floris Takens demonstrated in 1981 [11]that it is possible 
to reconstruct the state space of a dynamical system using only time series data drawn from 
sampling a single quantity determined by the system.  (This work was anticipated by other work 
[12]) 

A number of subsequent embedding theorems have sharpened and broadened Taken’s 
Embedding Theorem, and clarified the degree of reconstruction that is possible [10]. 

The essentials of phase space reconstruction are surprisingly simple and general.  Given a 
(frequently unobservable) state vector x(t)∈ℜn, we can define a periodic4 sampling of the state 
vector as follows: 

si=s(x(t0+iΔt))+ηi 

                                                 
4 The theorems remain robust under many non-uniform sampling conditions as well, but both for simplicity and 
because of the widespread use of periodic sampling, we focus here on that case. 
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where s(x(t)) simply represents the (scalar) value of some observable quantity dictated by the 
state, ηi represents some noise associated with each measurement, and Δt represents the lag 
between subsequent measurements.  For the moment, we will assume that the measurement noise 
is very small; discussion in subsequent sections will indicate how such noise can be recognized 
and handled. 

We can then define delay reconstruction vectors si of length DE as follows: 

 si=
1

1E

i

i

i D

s
s

s

+

+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Just as x(t)∈ℜn  traced out a frequently unobservable trajectory in state space of embedding 
dimension DS=n, we can think of the vectors si as etching out a trajectory in a reconstructed state 
space of size DE. 

While the connections between these state spaces are not at first blush obvious, Takens 
demonstrated a profound connection between them. In particular, as long as DE is sufficiently 
large (at least twice the intrinsic dimensionality5 of x(t)) and certain other basic but generally 
non-onerous restrictions are met, there will exist a uniquely invertible smooth map (a 
diffeomorphism) between the state space of x(t) and that of si.  Among other virtues, this map 
preserves the intrinsic dimensionality of the state space trajectory. 

It is important to stress that the requirements on reconstruction dimension DE are a function not 
of the dimensionality of the original state space DS but of the intrinsic dimension of the 
underlying trajectory x(t).  Moreover, in practice, this smooth mapping is often realized for 
considerably smaller values of DE. Thus, while it is not in general possible to reconstruct the 
state space of x(t) in ℜn for larger models, in some cases the intrinsic dimensionality is 
sufficiently small that we can explicitly construct or depict the reconstructed state space.  While 
there can be benefits from such a reconstruction, our interest in this paper lies in assessing one 
particular characteristic of the reconstructed space:  Its intrinsic dimensionality.  Because of the 
similar geometric structure of the trajectory in the two spaces, an estimation of the intrinsic 
dimensionality of the reconstructed state space will serve as an estimate of the intrinsic 
dimensionality of the original state space. 

The next section looks at particular means for estimating the intrinsic dimensionality of the 
reconstructed state space. 

2.3 Techniques for Dimensionality Estimation 
The embedding theorems demonstrate that we can in principle reconstruct the state space 
trajectory of a complex process using just data drawn from periodically sampled time series data 
for a single quantity determined by that process.  This section focuses on the task of estimating 
the intrinsic dimensionality of the original state space from the sampled data.  For this purpose, 

                                                 
5 In the sense of “box counting” dimension – a measure that is in practice similar to the correlation dimension 
discussed below. 
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we can make use of dimensionality estimation techniques for generic multidimensional data sets.  
The subsections below review particular approaches that have been used by past work.  While 
none of this work has examined intrinsic dimensionality estimation in the particular context of 
simulation model output, the approaches apply directly to this novel context. 

While embedding theory provides us with the necessary tools to reconstruct an explicit 
representation of the trajectory within state space, it is fortunate that an estimation of intrinsic 
dimensionality does not require us to do this.  Instead it will turn out that it is sufficient to simply 
measure distances between the points in that embedded space, without the need for any persistent 
representation of all of the points on the trajectory.  But in order to understand this procedure, we 
will have to present the basic mechanisms in a manner that will make reference to the set of 
embedded points.  The reader should keep in mind that this is a conceptual rather than 
computational construct. 

2.3.1 Epistemic Limitation 
The previous section described how we could use delay embedding for a time series to produce a 
set of points S in some space of dimensionality DE. The points of S are the delay reconstruction 
vectors si, and each element in those vectors is a particular measured sample from the system.   

It is worth emphasizing that when we begin this process, we lack knowledge of the “proper” 
dimension for the delay reconstruction vectors.  This is significant, because it imposes a 
limitation on our estimation procedure – In order to capture scaling behavior with exponent d, we 
need to be using delay reconstruction vectors of least dimension 2d.  On the other hand, 
assuming too high a dimension for our delay reconstruction vectors has relatively little cost.  It is 
thus prudent to use a conservatively high dimension for the vectors.   In the rest of the paper, we 
will term this tentatively chosen embedding dimension DE, in order to distinguish it from the 
hypothesized intrinsic dimension DI. 

Given such a set S, we can then apply a number of generic techniques for estimating, the 
intrinsic dimensionality of a set of points.  This section discusses those dimensionality estimation 
techniques.  

2.3.2 Dimensionality Measures 
Given some trajectory T in ℜn, there are many possible approaches to defining – much less 
measuring – the dimensionality of T.  Examples include the Hausdorff-Besikovich (or “fractal”) 
dimension [13], the “box counting” dimension [10],  the “information” dimension [13], and the 
correlation dimension (first proposed in [14]).   

The dominant method of dimensionality estimation is based on the correlation dimension.  It can 
be shown that the correlation dimension is a lower bound to the more precise “box counting 
dimension”, but it is believed that the difference between the two is very small – and perhaps 
negligible – for many practical examples [15].  In contrast to some of the other measures, the 
correlation dimension is also simple to define and relatively efficient to compute. 

The intuition behind the approach is as follows:  Suppose we are given a set of points S, each of 
whose members is an element of ℜn. Regardless of the value of n, if we are working with a 
structure with d intrinsic dimensions around some point, we would expect the number of points 
lying within a hypersphere of radius r around that point to increase as rd.  We would expect the 
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distances between pairs of points drawn from S to scale similarly.  In other words, we would 
expect 

 
,

( ) d

p S q S p q

I p q r r
∈ ∈ ≠

− ≤ ∝∑ ∑  

where I is the indicator function returning 1 if the argument is true and 0 otherwise.   

In order to estimate the correlation dimensionality of S, we therefore examine how the 
cumulative empirical probability distribution of the distance between pairs of points within S 
scales with r. More specifically, for a fixed set S we define 

 ,
2

( )
( ) p S q S p q

I p q r
C r
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∈ ∈ ≠
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We further define the correlation dimension as  

 
0

ln ( )lim
lnr

C r
r→

 

As discussed further below, in practice we often need to look at the variation around other 
regions than r=0, particularly in the context of noise.  We will be adopting the correlation 
dimension in our approach to estimating the dimensionality of the trajectory of a process. 

2.3.3 Point Estimation of Correlation Dimension 

The subsection above has described the quantity to be calculated ln ( )
ln
C r

r
⎛ ⎞
⎜ ⎟
⎝ ⎠

 but not a specific 

means of coming up with a point estimate. There are a number of algorithms that have been 
developed for performing the above estimation.  Grassberger and Procaccia’s original algorithm 
[13] appears to have involved simple plotting of C(r) vs. r on a log-log graph and “eyeballing” 
the scaling behavior.  Specifically, the authors took the slope of the curve (although not 
necessarily around r=0) to indicate the correlation behavior.  [11] proposes a maximum 
likelihood estimation approach that permits simple calculation, but is forced to deal with 
randomness as a special case.  The robustness of this algorithm to the statistical fluctuations that 
occur in smaller datasets was also unclear to the author.  [15] provide a refinement of 
Grassberger and Procaccia’s algorithm to permit improved estimation for smaller numbers of 
time series samples.  Their results suggest a means of refining the estimates examined in this 
paper. 

Our approach arrives at a point estimate for the correlation by an “eyeball” approach, although 
our library significantly simplifies the process by directly indicating the slope of the line at 
different values of r.  The user must merely choose the appropriate scale (value of r) at which to 
determine the correlation dimension.  As discussed below, this is generally determined by 
looking at the graph of lnC(r) vs. ln(r) for different embedding dimensions DE. 

2.3.4 Accuracy and Sample Size 
Past work [16, 17] has demonstrated that the set S of embedded points must reach a certain level 
to guarantee a good estimate of C(r).  Specifically, to estimate an instrinsic dimension D we 
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require at least 210
D

 data points in S (or 10D pairs of data points drawn from S).  [15] have 
demonstrated, however, that appropriate correction can allow data sets not meeting this criterion 
to produce good results in practice.  It bears noting that there is something of a chicken-and-egg 
problem here, as we do not know the number of points required in the analysis until after the 
analysis is successful.  At the cost of a computational workload, it is therefore safer to err on the 
side of overestimating the possible dimension. 

2.3.5 Computation Demands and Probabilistic Sampling 
Because of the need to examine distances for each pair of points, computation of C(r) requires 
time quadratic in the size of the data set (i.e. is ( )2O S ) For large sets S and low intrinsic 

dimensionality, the exhaustive computation of C(r) may be needlessly expensive.  We introduce 
the approach of probabilistically estimating C(r) by Monte Carlo sampling.  Within this paper, 
we adopt this approach.  Specifically, we define P∈S×S where each element of P is a pair of 
randomly selected elements of S, and |P|=N.  We then compute the approximation to C(r): 

 ( , ) ( , )
2

( ) ( )
( ) p q P p q P

I p q r I p q r
C r

NP
∈ ∈

− ≤ − ≤
≈ =
∑ ∑

 

C(r) can be estimated in this manner in a fully general form (i.e. without pre-set fractiles) within 
time O(NlogN) (with the bottleneck being the time necessary to sort the N distances).  If we are 
willing to simply count a histogram of empirical fractiles with known spacing, we can perform 
the computation in time O(N). 

By changing N, we can trade off running time and accuracy in the estimation of C(r). 

2.3.6 Stochastic Effects 
To this point, we have treated the underlying state trajectory as deterministic.  In practice, the 
values of the time series will typically incorporate a non-trivial stochastic component.  This 
component may reflect several things, including inherent stochastics or round-off error in the 
original system or measurement error.   

Recall the earlier reasoning concerning the intrinsic dimension of a system and its time series 
from Section 0:   The larger the inherent dimension of the system, the larger the number of 
samples needed to predict the next output of the system.  An ideal stochastic source cannot be 
characterized by any finite dimension:  No matter how many previous measurements we take, we 
cannot predict the next measurement.   As a result, stochastic effects will appear to have infinite 
intrinsic dimensionality.   

In practice, we tend to see stochastic effects more at certain scales, and less at others.  We can 
recognize those effects by considering the estimate of logC(r) vs. logr for several different sizes 
of delay embedding dimension DE.  For those scales (r=r0) at which deterministic effects 
dominate, we expect the slope of the graph of logC(r) (i.e. 
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intrinsic dimension.  By contrast, for those scales at which randomness dominates, no matter 
how large DE may be, we expect the dimension estimate of to rise.  These results are borne out in 
practice. 

2.4 Summary 
Within this section, we described background information on several different subpieces of the 
problem at hand.  We introduced the notion of the intrinsic dimensionality of a process, a 
quantity that is independent of implementation or the particular choice of variables used to 
realize that process.  We observed the fact that one quantity from a highly coupled process is 
influenced by all elements of the state of the process, and the relationship between a periodically 
sampled time series of some quantity from a highly coupled process and the dimensionality of 
the underlying process.  We saw that in such a coupled process, such a time series can allow us 
to reconstruct a close approximation to the trajectory of the process that gave rise to it.   

This fact opened the opportunity to apply generic algorithms for estimating the intrinsic 
dimensionality of a set of points in order to estimate the intrinsic dimensionality of the 
generating process.  In particular, we have introduced a means of determining correlation 
dimension of the delay reconstruction data as a practical means of estimating the intrinsic 
dimensionality of the original system state space.  Given sufficient resources, we can calculate 
C(r) precisely, or create a probabilistic estimate.  Given C(r), there are several techniques for 
estimating the correlation dimension.  Given several initial assignments of embedding 
dimensions DE, we can separate random from deterministic effects, and estimate the correlation 
dimension for those deterministic sections.  Within certain parameters (concerning number of 
data points and embedding dimension used), these algorithms can give estimates of intrinsic 
dimensionality of guaranteed accuracy.  Outside these bounds, the results are often still accurate 
in practice, although this cannot be guaranteed. 

The next section describes the way in which our particular approach integrates these elements to 
perform a single approach to estimating the dimensionality of simulation models. 

3 Summary of Approach 

3.1 Dimensionality Estimation 
A library of MATLAB functions was created to automate almost all of the process of 
dimensionality estimation from output data series.  Because of the large size of data sets involved, 
the routines were designed to lower memory footprint by eliminating intermediate results – 
thereby increasing performance by minimizing the likelihood of virtual memory thrashing. 

Initial time series have been imported as MATLAB vectors.  The system collects samples of 
distances between uniformly selected reconstruction vectors.  This operation is performed in 
such a way as to avoid explicitly creating a set of embedded points.  Instead, the system 
randomly selects pairs of embedded reconstruction vectors from a pair of uniformly distributed 
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points indexed from the timeseries.  The code returns an array of distances of user-specified 
length. 

The set of distances so obtained is then normalized by its largest value and sorted in ascending 
order.  The contents of the array give the normalized distances (i.e. r), and the normalized index 
of each in the array indicates the empirical fractile associated with this distance – i.e. C(r).  This 
information is sufficient to construct a graph depicting ln ( )C r  vs. ln r , and thereby to construct 
an eyeball estimate of the correlation dimension (a method used in [13]).  

Although the definition of the correlation dimension involves looking at the asymptotic scaling 

of ln ( )
ln
C r

r
 as r approaches 0, use of eyeball estimation suggests that for practical systems in 

which we have imperfect measurement or some inherent stochastics (e.g. due to roundoff error), 
it is helpful to examine the slope of ln ( )C r  vs. ln r  at many scales of r.  Takens noted as early 
as 1981 [11] that stochastic effects (associated with infinite dimensionality) frequently dominate 
at smaller scales.  In addition, because of the logarithmic scaling of r, statistics for small r tend to 
exhibit high variability due to low sample size.  Because of these effects, it is often the slope of 
the ln ( )C r  vs. ln r curve at somewhat higher values of r that converges at the intrinsic 
dimension. 

We have found it tedious and error-prone to estimate the slope of the curve at different points.  
As a result, we designed our library to permit the user the option of taking another step, and 
allowing the library to computationally estimate the slope of the curve over a wide range of r.  
Performed naively, this process tends to overemphasize small variations in local slope.  We have 
found that some measure of smoothing is highly desirable.  As a result, we interpolate ln ( )C r  
and ln r  in a piecewise linear fashion over an identical fixed grid with 20 points, and then show 
the ratio of slopes of each within that interval as the estimated correlation dimension for that 
interval. 

By presenting such a graph for multiple embedding dimensions DE, it is typically possible to 
clearly distinguish regions dominated by stochastics on the one hand and deterministic effects on 
the other, and to accurately estimate the correlation dimension for the latter.  For example, Figure 
5 shows a plot of the slope of ln ( )C r  vs.  ln(r) for a synthetic structure of two dimensions for 
different scales of ln(r) (abscissa) and different DE (mapped to distinct colors).  It can be readily 
seen that the estimates of correlation dimension stabilize for r exceeding a particular value (in 
this case, r ≥.001 for the synthetic two dimensional structure and r≥.01 for the synthetic three 
dimensional structure); by contrast, the dimensionality estimates for r below that threshold 
expand continuously as DE increases. 

3.2 Interface to Agent-Based Models 
This section describes our implementation of a system based on the above ideas for estimating 
the intrinsic dimensionality of descriptively complex agent-based simulations.  All agent-based 
simulations were carried out using AnySim 5.2 [2].   To enhance familiarity for readers and 
permit reproducibility of results, most models studied were sample simulations bundled with 
AnySim.  For each model, an output quantity was selected.  In all cases, this was an aggregate 
property of the entire population – for example, the count of individuals infected within a 
population, or the total size of a particular population.   
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Each model was modified by adding a timer, along with a single line of event code that 
periodically reported the value of this global value to the output log in a comma-separated format.  
This modification had no impact on the system’s behavior other than a slightly lower 
performance.  Our early investigations of the intrinsic dimensionality of agent-based models 
found that the quality of the results degenerated rapidly as the sampling frequency increased; 
specifically, low sample rates led to failure of dimensionality estimation to converge as DE 
increased.  The frequency of the timer for agent-based models was therefore set to allow for very 
fine-grained observation of changes in the output variable.  (Table 1 shows for each experiment 
the settings for these timers as well as other parameters discussed below). 

Agent-based models typically required hours of computation and produced 100,000 or more 
samples of the global value.  The results of these simulations were placed in comma separated 
variable text files and imported into MATLAB.  Subsequent analysis took place within 
MATLAB. 

Agent-Based Model Reporting object Reporting (timer) period 

Infectious Ants Number of afflicted ants 1 

Predator Prey Size of hare population .0005 

Table 1: Analyzed Agent-Based Models 

4 Results 
In this section, we describe the results of our experiments with our dimensionality analysis 
system. 

4.1 Synthetic Structures 
In order to validate correct operation of the dimensionality estimation algorithms we estimated 
the dimensionality of synthetic structures of known dimension.  To do this, we created structures 
of 2 and 3 dimensions (i.e. DI=2 and DI=3) in a higher dimensional space of DE dimensions, with 
DE varying between runs.  Each point in the structures was created by setting the first DI 
elements of a vector of length DE to random values uniformly distributed between 0 and 1.  
These vectors were then treated as the results of embedding, and analyzed for intrinsic dimension.  
200,000 distances were randomly selected among these structure for determination of C(r).  The 
entire process was repeated for a set of different dimensions DE.  Specifically, the two 
dimensional structure was examined in each integral embedding dimension from 2 through 5, 
and the three dimensional structure from 2 through 7.  The results of these experiments are 
shown in Figure 5. 
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Figure 5:  Correlation Dimension vs. ln(r) for a Synthetic Structure of 2 (left) and 3 (right) Intrinsic 
Dimensions. 

Figure 5 illustrates the characteristic impact of randomness on graphical estimates of correlation 
dimension.  Because the synthetic structures were composed of the use of randomly selected 
coordinates for the first several dimensions, stochastic effects dominate for small distances 
(small values of ln(r)).   Because true random effects have no true dimensionality bounds and 
because even pseudo random effects exhibit high intrinsic dimensionality, dimensionality 
estimates for small r vary strongly with DE – the higher the embedding dimension, the higher the 
estimated correlation dimension.  

At a wider scale (larger distances), the intrinsic dimensionality of the structure dominates.  
Recall that the correlation dimension is defined as  

0

ln ( )lim
lnr

C r
r→

 

Because stochastic effects dominate for the smallest r, the best estimates of correlation 
dimension are given by the slope of ln ( )C r  vs. ln r  at r= rd, where rd is the smallest r for which 
the algorithm yields convergent results for sampled embedding dimensions DE above some 
minimal DE

*. 

Another related characteristic evident in Figure 5 is the impact of the embedding dimension on 
the intrinsic dimensionality estimates.  Geometric constraints prevent us from adequately 
performing the delay space reconstruction of a trajectory of intrinsic dimension DI in an 
embedding dimension DE<DI.  While the approach to dimensionality estimation presented in this 
paper avoids the need for an explicit reconstruction of state space, the correlation dimension 
estimates may be poor for DE<DI.  Once DE reaches or exceeds DI, these estimates will typically 
converge to the same value for ranges of r in which deterministic effects dominate.  These 
estimates are guaranteed to converge to DI

 for DE>2 DI, provided that sufficient samples are 
taken.   

4.2 Lorenz Attractor 
A second set of validation experiments estimated the intrinsic dimensionality of another, more 
complex object of known intrinsic dimensionality:  The Lorenz Attractor [18].  The correlation 
dimension of this object is rougly 2.05 [13], and the attractor has served as a benchmark for other 
dimensionality estimation approaches [13]. 
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Figure 6:  Estimated Correlation Dimension vs. ln(r) for the Lorenz Attractor.  Stochastic effects predominate 
for ln(r) < -2.  The varying estimates of the correlation dimension for ln(r) ≥ 2 arise from limitations in 
accuracy for small embedding dimensions.  Estimates converge to a correlation dimension estimate of 2 at 
ln(r) ≥ -2. 

As in Figure 5, random effects predominate for small r (in this case, ln(r)<-2).  For ln(r)≥-2, we 
continue to see some variability in the estimate of the correlation dimension, although it is 
markedly less than for small values of r.  The variability for ln(r)≥-2 reflects the varying quality 
of the estimate of the correlation dimensional for different embedding dimensions DE.  
Empirically, we have noticed that (for deterministic regions) these estimates tend to rise rapidly 
for DE<DI, and then converge (although sometimes slowly) to some asymptotic curve giving the 
correlation dimension vs. r.  This observation is borne out for Figure 2, where there is relatively 
little difference between the correlation dimensionality estimates for DE=8 and 10. 
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4.3 Infectious Ants 

 
Figure 7:  Estimated Correlation Dimension vs. ln(r) for Agent-Based Model of Infectious Ants. 

Our third experiment investigated the correlation dimension of a richly detailed agent-based 
model of infection spread.  This model (henceforth termed “Infectious Ants”) was selected 
because it includes high degrees of spatial and per-agent (ant) heterogeneity. The model 
describes the dynamic behavior of a population of 200 ants, each of which is associated with 
several pieces of state, including x and y location, current direction of travel, health status 
(healthy or afflicted), and an indication as to whether they are capable of curing another ant (i.e. 
whether they are a “doctor” ant).  Ants wander in a particular direction until they encounter an 
obstacle (one of the walls) or enter the proximity of another ant.  Upon encountering the 
boundary, ants are reflected in such a manner that their angle of reflection is equal to their angle 
of incidence.  Their behavior in the presence of another ant is more complicated, and involves 
collision avoidance reasoning.  If an infected ant encounters a healthy ant, the healthy ant 
becomes infected, unless the healthy ant is a “doctor” ant, in which case the infected ant recovers.  
In the absence of curative treatment by doctor ants, ant recovery times are exponentially 
distributed (mean duration 100, regardless of further encounters of infected ants that may have 
occurred since the original infectious encounter).  Ants can also develop a spontaneous affliction; 
the duration of unaffected health is also exponentially distributed (mean duration 2000). 

Based on the high dynamic complexity of this game, we expected a high intrinsic dimensionality 
in the aggregate dynamics.  This expectation was not borne out by the results (shown in Figure 7), 
which suggest an intrinsic dimensionality of approximately 4.  The low dimensionality of the 
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result has proved robust under varying ranges of embedding dimensions DE, sufficiently high 
reporting frequencies and sample counts of distances used in dimensionality estimation. 

4.4 Predator Prey 
As a fourth subject of study, we estimated the intrinsic dimensionality of a particular trajectory 
of an agent-based model of a spatially disaggregated predator-prey system.  This model 
simulated the evolution of two animal populations, one a predator (lynx) and the other prey 
(hares).  Each animal was associated with a particular age and location in a two dimensional 
plane tessellated into regular rectangular cells.  As in classic models such as Latka-Volterra, 
lynxes and hares both have the potential for reproduction within a given timestep, with the 
likelihood of reproduction of the hares exceeding those of the predators.  Hares are born into the 
cell of their parents, unless that cell is overpopulated with hares, in which case the birth is treated 
as occurring in less populated cells around.  Normally 5 hares are born to a hare at once (except 
for overpopulation).  The frequency between births is exponentially distributed with mean 
duration 4.  Lynxes are always born in the same cell as their parents and are born more 
frequently (mean duration 2) and in smaller numbers (3 per birth) than hares. 

Within each timestep, a predator has a likelihood of “catching” prey that depends linearly (up to 
unity) on the count of prey occupying the same cell as the predator.  Predators either consume an 
adequate supply of prey within each time step or move to an adjacent cell if inadequate prey is 
unavailable.  If a predator is unable to find any prey within some fixed time, the predator dies. 

Both predators and prey die of natural causes at a fixed age, with that of lynxes (8) exceeding 
that of hares (3), if they do not first perish due to other causes.  Enforcing these fixed durations 
requires maintaining an animal’s age as a component of the animal’s state. 

The initial populations of hares and lynxes are 5000 and 40; as in the Latka-Volterra model, the 
model exhibits non-sinusoidal oscillatory behavior, although for the case of the agent-based 
model it is quasi-periodic rather than strictly periodic.  The model thus represents a trajectory 
through a sample space whose dimension varies dynamically with population.  Based on the fact 
that each animal is associated with a state consisting of size 3 (age and two location coordinates), 
we estimate the state space dimensionality of the system experienced during the sampled run to 
extend well into the thousands.  

Because of the high dimensionality of the model state space, we were surprised to discover that 
the system’s trajectory also exhibits very low-dimensional dynamics.  As depicted in Figure 8, 
the estimated intrinsic dimensionality of the trajectory appears to be approximately 5.  The 
estimates of this dimensionality vary for lower DE

 but converge for DE≥10. The stability of this 
result was tested for distance sample sizes between 200,000 and 5,000,000. 
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Figure 8: Estimation of Correlation Dimension vs. ln(r) for Agent-Based Predator Prey Simulation 

5 Discussion 

5.1 A Surprise – Or Not? 
This paper has presented preliminary experiments investigating the intrinsic dimensionality of 
the output of descriptively complex simulations.  While this work is still in its early phases and is 
as yet highly tentative in its implications, these results suggest that we may have discovered 
evidence of very low-dimensional structure in the global behavior of some nominally high-
dimensional agent-based model systems.  Although the multi-agent systems literature is large 
and diffuse, we believe that this paper offers the first instance in which the tools of embedding 
and dimensionality estimation have been used to study simulation output.  An earlier paper ([19]) 
performs a dimensionality analysis of complex model simulation output, but their method 
employs and much simpler and more limited form of linear analysis. 

From a global viewpoint, the recognition of low-dimensional dynamic structure in the emergent 
behavior of a complex system is hardly unusual.  Physicists have long recognized that in the 
presence of symmetry, conservation laws or simple boundary conditions, the order parameters of 
highly complex physical systems can exhibit very low-dimensional dynamics [10].  Much of the 
classic approaches to very high (and frequently infinite) dimensional systems (such as are seen in 
solid or fluid mechanics) proceed by appeal to such regularities – permitting, for example, the 
reduction of systems of partial differential equations into sets of ordinary differential equations.  
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We believe that it may in theory be possible to recognize similar opportunities for model order 
reduction in the design of simulation models. 

We hope that by further investigation of these results, we may learn to better recognize 
conditions in which the full generality (and attendant complexity) of high-dimensional models is 
required, and to identify opportunities for reducing model complexity and computational demand 
through model order reduction. 

5.2 Shortcomings 
While we believe that the results presented here are of potential significance to significant ranges 
of complex system models, they do suffer from significant limitations, including the following: 

• Restriction to Periodic Systems.  The dimensionality estimation procedure discussed 
here is only applicable to systems exhibiting sufficiently dense exploration of regions of 
state space.  Absent repeated visitation to particular regions of state space, a trajectory 
will appear to have only 1 intrinsic dimension (serving, as it were, as a thread through 
state space, rather than as a multidimensional manifold in that space).  Given the 
embedding theorem, this would mean at its least that the time series must repeat similar 
outputs many times.  The larger our intrinsic dimensionality, the greater and greater the 
extent of the sequence that must be repeated in order to properly estimate the 
dimensionality of the trajectory.  

• Restriction to a Single (Parameter- and Initial-Condition-Specific) Execution.  A 
second and highly important restriction is related to the fact that the approach estimates 
the intrinsic dimensionality of a particular model trajectory – that is, a specific execution 
of the system rather than of all possible executions of the model.  Each execution of a 
model is specific to a particular set of parameter values and initial conditions, and in a 
general system it is quite possible that the dimensionality of trajectory will differ under 
different parameter settings or initial conditions6.  There is thus no guarantee that the 
particular intrinsic dimensionality estimated is the maximum dimensionality of the 
model.  Indeed, the very notion of “model” differs between dynamical systems theory 
(where a model is associated with a specific parameterization) and computational 
modeling (where we frequently speak of a model in terms of its constituent 
equations/structure, abstracting over the details of the parameter settings).  Although we 
have explored the idea of concatenating sequences of runs of the same model produced 
by different parameters and initial conditions in order to estimate the intrinsic 
dimensionality of the model as a whole, we do not feel that this approach is satisfactory. 

• Residual Subjectivity.  Despite the high levels of automation achieved by the library 
submitted with this paper, the estimate of intrinsic dimensionality still retain some 
measurement of human judgment in the selection of the time delay between samples, in 
the decision as to what embedding DE to examine, the choice of the number of sample 
points, and in deducing a dimensionality estimate from the interpretation of the graphs.  
We believe that some measure of this ‘art’ can be effectively removed by further 

                                                 
6 It is worth noting that we would expect the dimensionality of all trajectories of an ergodic model to be the same 
regardless of initial condition. 
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elaboration of the framework (for example, automated determination of autocorrelation 
characteristics of the input time series could potentially automate the selection of an 
appropriate sample spacing), but some element of human judgment is likely to remain. 

• Inability to Exploit Multiple Measures.  One of the great motivations for using 
embedding theory is the fact that even in the presence of a primarily non-observable 
system, it is possible to deduce information regarding the structure of the state space 
trajectory from just a single system output (and even a noisy output).   However, even in 
the context of a largely non-observable system, we often have recourse to several system 
outputs.  It would be desirable to be able to use several outputs to refine the estimate of 
system dimensionality or the reconstruction of the state space beyond what could be 
achieved with just one input.  Unfortunately, existing theory does not seem to provide an 
elegant means of addressing this problem.  We intend to investigate the effectiveness of 
simple modifications of the methodology (for example, performing embedding on 
interwoven time series of pairs, one drawn from each system output), but believe that a 
more general approach may be possible. 

• Non-Constructive Analysis.  While the revelation that an agent-based model exhibits 
low intrinsic dimensionality can be encouraging for model developers seeking to 
characterize complex populations using ordinary differential equations (ODEs), the 
analysis provide no help in formulating the most appropriate ODE model.  While it is 
always encouraging to know that a low-dimensional model is in fact feasible, it would be 
desirable to have some assistance in identifying such a model.  To address this need, we 
believe that model developers need to pair dimensionality analysis with other techniques.  
In particular, we see strong opportunities for the application of model order reduction 
techniques developed in other fields to simulation models.  Constraints on this approach 
result from the fact that many types of simulation models (notably including agent-based 
models) as yet lack a well-defined mathematical semantics.  In addition to opening the 
door to application of methods of formal model order reduction, we believe that 
addressing this shortcoming is a high priority and will yield many additional benefits. 

5.3 Future Work 
We intend to extend this work by analyzing additional agent-based models, further refining the 
presented framework.  Specifically, we plan to introduce certain analytic simplifications and to 
improve the precision of the results. We also hope to performance optimizations to improve 
running time, thereby allowing for analysis of larger sample distance sets.   We also plan to 
explore some of the directions discussed in the previous sections to deepen and simplify the 
analysis.  Given the difficulties handling the correlation dimension with noisy data, we also 
believe it will be prudent to examine alternative approaches, such as the use of spectral 
complexity measures.  Techniques drawn from dimensional scaling approaches and formal 
model order reduction also provide attractive avenues of research aimed at lightening the 
performance burden of complex agent-based simulation models. 

A particularly important component our future work reflects our belief (first expressed in [3]) 
that the lack of explicit mathematical semantics for most agent-based models is a significant 
liability.  In addition to limiting model order reduction approaches, we believe that the lack of an 
explicit, common mathematical framework for such models also adversely affects reasoning 
about, generalizing from, validating and calibrating agent-based models.   It likely also impedes 
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the accessibility and modifiability of agent-based models by hindering the introduction of a 
declarative language for model specification.  For this reason, our research group is formulating 
approaches that can provide compliant, declarative, agent-based models with precise and 
transparent mathematical meaning. 

6 Appendix 1 – Matlab Package Notes 
In order to allow for others to benefit from the work described herein, we have made the Matlab 
source code available for free distribution.  The source code is included in the CD-ROM 
proceedings and is also available by request from the author. 

The source code consists of a set of Matlab functions.  Many of the functions are helper or 
wrapper functions concerned with computationally undemanding but convenient tasks such as 
creating graphs, iterating through common sets of experimental parameters.  There are a few 
functions (indicated for convenience with an asterix) that perform key processing steps, such as 
deriving distances from the user-specified time series data, estimating C(ε) from normalized 
versions of those distances, and calculating the estimated dimensions from the estimated C(ε). 

A few words are in order with regards to the code and specifications below.   

• Naming:  Functions and parameters are given descriptive names, but must live within the 
constraints imposed by the Matlab restrictions on lengths of identifiers.  Names often 
included components that are variants of the Hungarian variable naming system [Simonyi 
ref].  This system encodes type (representation) information within names in order to 
reduce confusion regarding the representation or function of a value held by a variable or 
passed/returned from a function.  Thus, a prefix of “rg” indicates an array, a “str” prefix 
denotes a string, “ct” a count, etc.  In accordance with the convention in the literature on 
time series embedding, we use the prefix “a” to indicate a time series vector.  

• Optimization opportunities.  While limited amount of Matlab-specific optimization has 
been performed (e.g. the use of vector operations, pre-allocation of large arrays), the 
current code is optimized for simplicity rather than speed.  In part, this reflects the 
difficulty of significantly improving code performance within the high overhead imposed 
by Matlab’s code interpretation framework and the desire to maximize portability by 
avoiding code that would rely upon the presence or require configuration of an external 
compiler.  While we believe that significant gains would be achieved by using a lower-
level compiled language for the core computational components of the code, we believe 
there are greater opportunities for streamlining existing algorithms (for example, the use 
of an O(n) rather than O(nlogn) estimation procedure for C(ε)) within Matlab without 
sacrificing portability.  We anticipate future versions of the library which take advantage 
of these opportunities.  

• Specification Notation.  For the sake of brevity and conceptual clarity, we have taken 
certain liberties in notation below.  Rather than using the strict data types associated with 
symbols, we have indicated the domains modeled by those data types, or by the symbol 
itself (whichever is more restrictive).  For example, ℵ is used to indicate a natural 
number (non-negative integer), ℜ a real, exponents used to indicate arrays/vectors of 
numbers, etc. 
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6.1 Analytic Functions 
 
DetermineAndDisplayCorrDimensionFromTimeSeriesForRgEmbDims  
 Informal description  

Creates new graph and displays estimated correlation dimension 
(derivative of C(ε) for different trial embedding dimensions on 
that graph, as specified by the array of integral trial 
dimensions rgDims. 

 Arguments 
aTimeSeries : ℜN The time series to be embedded 

(where N is the count of data 
points). 

ctDesiredDistances: ℵ Count of distances to sample to 
generate statistics to estimate 
C(ε).   

strFigureName: String Figure name. 
rgDims : ℵE (where E is the count of embedding dimensions to 

examine). 
maskFigureType: ℵ Type of graph to create.  Must be 

one of the following 
1:   Graph showing ln(C(r)) vs  

ln(r) 
2:   Graph showing the slope of the 

first graph (i.e. 
ln ( )

ln
d C r

d r
 vs ln(r)    

(i.e. the SLOPE of figure type 1) 
 
ctSlopeEstimationGridpoints:  Count of uniformly spaced values of 

ε (normalized values of r) over 
which to estimate the slope of the 
ln(C(r)) vs. lnr curve. 

 
dMinIndexDist Minimum distance between indices to 

be used when randomly selected 
points to judge distance scaling.  
Any pair of points selected from 
the time series must have a 
difference in indices greater than 
or equal to this number.  The goal 
of such index-based filtering is to 
allow for less correlation between 
randomly selected points by 
filtering out points that have high 
correlation due to the fact that 
they were sampled at nearby times.  
(The same goal could be 
accomplished by downsampling the 
time series, but at the cost of 
sample counts). 

 
 Returned values  

rgDim: ℵE Specifies the dimensions for which 
data has been collected. 
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rgrgEpsilon: ℜE×R Each element of this vector is the 
domain of C(ε) for a particular 
embedding dimension.  For each 
dimension index (range 1 to E), 
specifies the vector of R∈ℵ 
normalized distance values of ε 
sampled for that dimension.  Note 
that R will never exceed 
ctDesiredDistances, but could be 
equal to ctDesiredDistances or (for 
the case where certain distances 
were sampled multiple times) less 
than that value. 

rgrgDEstimatedCofEpsilon : ℜE×R 
This is the range of C(ε).  For 
each dimension index i (range 1 to 
E), specifies the count of sampled 
distances less than or equal to 
each value of rgrgEpsilon{i}. In 
other words given 1≤i≤E and 1≤j≤R 
rgrgDEstimatedCofEpsilon{i}(j)=C(rg
rgEpsilon{i}(j)). 

   
 Side effects  

A new graph is created. 
 

Package Uses 
DetermineAndDisplayCorrelationDimensionFromTimeSeriesOnExistFig 

     
Notes 

The most common high level function for invocation. 
  
 
DetermineAndDisplayCorrelationDimensionFromTimeSeriesForEmbDims  
 Informal description   

Creates new graph and displays estimated correlation dimension 
(derivative of C(ε) for uniformly spaced trial embedding 
dimensions on that graph, as specified by minimum dimension 
iDimMin, maximum dimension iDimMax and dimension increment 
iDimIncrement.  

 Arguments 
aTimeSeries: See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctDesiredDistances: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

strFigureName: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

iDimMin The minimum embedding dimension to 
examine. 

iDimIncrement The spacing between dimensions to 
examine. 
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iDimMax The maximum embedding dimension to 
examine. 

maskFigureType See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctSlopeEstimationGridpoints See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

dMinIndexDist See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

 
 Returns  

rgDim See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

rgrgEpsilon See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

rgrgDEstimatedCofEpsilon   See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

 
 Side effects   

A new graph is created. 
 

Package Uses 
DetermineAndDisplayCorrelationDimensionFromTimeSeriesOnExistFig 

     
Notes 

This is a simple wrapper function for 
DetermineAndDisplayCorrelationDimensionFromTimeSeriesForEmbDims 
for the special case where the dimensions of interest are 
uniformly spaced. 

 
 
DetermineAndDisplayCorrelationDimensionFromTimeSeriesOnExistFig 
 Informal description 

Displays estimated correlation dimension (derivative of C(ε) for 
a particular embedding dimensions. 

 Arguments 
aTimeSeries See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctEmbeddingDimension See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctDesiredDistances Nominal dimension for the delay-
reconstructed embedding of 
aTimeSeries. 

strFigureName See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 
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maskFigureType See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctSlopeEstimationGridpoints See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

dMinIndexDist See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

 
 Returns 

rgEpsilon: ℜR This is the domain of C(ε).  
Specifies the vector of R∈ℵ 
normalized distance values of ε 
sampled for that dimension.  Note 
that R will never exceed 
ctDesiredDistances, but could be 
equal to ctDesiredDistances or (for 
the case where certain distances 
were sampled multiple times) less 
than that value. 

rgDEstimatedCofEpsilon : ℜR 
This is the range of C(ε).  
Specifies the count of sampled 
distances less than or equal to 
each value of rgEpsilon(i). In 
other words given 1≤j≤R 
rgDEstimatedCofEpsilon(i)=C(rgrgEps
ilon(i)). 

 Side effects 

Draws derivative of C(ε) vs ε on existing graph. 

 Package Uses 
  DetermineCofEpsilonFromTimeSeries 

DisplayDerivativeOfCofEpsilonOnExistingFigure 
Notes 

Can be used to display a correlation dimension graph for a single 
embedding dimension.   

 
 
 
 
DetermineCofEpsilonFromTimeSeries 
 Informal description  

The highest-level function used to determine C(ε). Returns two 
vectors that specify successive values of ε, and C(ε) for each of 
these values. 

 Arguments  
aTimeSeries See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctEmbeddingDimension See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 
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ctDesiredDistances See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

dMinIndexDist See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

 Returns   
rgEpsilon: See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesOnExistFig 

rgDEstimatedCofEpsilon: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesOnExistFig 

 Package Uses 
  SelectRandomDistancesFromOnTheFlyEmbeddingOfTimeSeries 

DetermineCofEpsilonFromDistances 
 Notes  
 
 
SelectRandomDistancesFromOnTheFlyEmbeddingOfTimeSeries 
 Informal description:   

Selects ctDesiredDistances random pairs of points from the 
ctEmbeddingDimension-dimensional embedding of time series 
aTimeSeries.   

 Arguments  
aTimeSeries:   See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctEmbeddingDimension:  See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesOnExistFig. 

ctDesiredDistances:   See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

dMinDist: Minimum distance to consider. 
 

 Package Uses  
 Notes  

In order to prevent problems with the logarithm function 
elsewhere in the package, the function guards against 0-length 
distances by assigning an arbitrary small value (currently .1) as 
the distance between any points whose distance is 0.  This should 
be replaced an alternative and more general formulation. 

 
 
DetermineCofEpsilonFromDistances 
 Informal Description 

Determines C(ε) by determining the count of datapoints (distances) 
in the given (unsorted) list rUnsorted that are less than or 
equal to different values of r.  This function is simply a 
wrapper function for DetermineCofEpsilonFromNormalizedDistances 
that normalizes the given set of distances by the specified 
constant, and passes on the normalized distances to 
DetermineCofEpsilonFromNormalizedDistances. 
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 Arguments  
rUnnormalizedDistances: ℜn Array of unsorted normalized 

distance values. 
dNormalizingCoefficient:ℜ Constant by which to normalize the 

given distances 
 Returns   

rgEpsilon: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesOnExistFig 

rgDEstimatedCofEpsilon: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesOnExistFig 

 Package Uses    
DetermineCofEpsilonFromNormalizedDistances(rNormalizedDistances); 

 Notes 
 
 
DetermineCofEpsilonFromNormalizedDistances 
 Informal Description 

Determines C(ε) by determining the count of datapoints (distances) 
in the given (unsorted) list rUnsorted that are less than or 
equal to different values of ε.  This is the core “workhorse” 
routine for determining C(ε). 

 Arguments  
rUnsorted : ℜn   Array of unsorted normalized 

distance values. 
 Returns   

rgEpsilon: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesOnExistFig 

rgDEstimatedCofEpsilon: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesOnExistFig 

 Side effects   
Draws derivative of log C(ε) vs log ε on existing graph. 

 Package Uses 
None 

 Notes 
   
 
DisplayDerivativeOfCofEpsilonOnExistingFigure 
 Informal description   

Displays the estimated derivative of log C(ε) vs. logε on a 
preexisting graph.  

Arguments  
rgEpsilon: ℜm Sorted (in ascending order) unique 

vector of values of ε 
rgDEstimatedCofEpsilon: ℜm Vector of C(ε) where ε is as 

specified by rgEpsilon.  
rgDEstimatedCofEpsilon[i] = | { r ∈ 
rUnsorted s.t. r < rgEpsilon[i] } | 
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ctSlopeEstimationGridpoints:ℵ The count of points at which to 
estimate the slope of the log(C(ε)) vs log(ε) graph. 

 Side effects   
Draws derivative of log C(ε) vs log ε on existing graph. 

 Package Uses  
None 

Notes  
 

 
DetermineAndDisplayCorrelationDimFromSynthStructOnExistFig 
 Informal description   

Displays the estimated derivative of log C(ε) vs. logε from a 
synthetic structure of dimension ctStructureDim on a preexisting 
graph.  

Arguments  
ctStructureDim: ℜm The intrinsic dimension of the 

structure which to create. 
ctEmbeddingDimension: ℜm The dimension in which to embed the 

synthetic structure. 
ctDesiredDistances:ℵ See 

DetermineAndDisplayCorrDimensionFro
mTimeSeriesForRgEmbDims. 

strFigureName:ℵ See 
DetermineAndDisplayCorrDimensionFro
mTimeSeriesForRgEmbDims. 

maskFigureType:ℵ See 
DetermineAndDisplayCorrDimensionFro
mTimeSeriesForRgEmbDims. 

ctSlopeEstimationGridpoints:ℵ The number of gridpoints used in 
slope termination for estimating 
the correlation dimension.. 

 
 Side effects   

Draws derivative of log C(ε) vs log ε on existing graph. 
 Package Uses  

SelectRandomDistancesFromNDimensionalStructureInSampleSpace  
DetermineCofEpsilonFromDistances 
DisplayDerivativeOfCofEpsilonOnExistingFigure 

Notes  
 

DetermineAndDisplayCorrelationDimFromSynthStructCtSamples 
 Informal description   

Displays the estimated derivative of log C(ε) vs. logε from a 
synthetic structure of dimension ctStructureDim on a new graph, 
but for different sample counts 

Arguments  
ctStructureDim: ℜm The intrinsic dimension of the 

structure which to create. 
ctDesiredDistancesMin:ℵ Minimum count of desired distances 

to sample when determining the 
correlation dimension. 
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ctDesiredDistancesIncr:ℵ Increment count of desired 
distances to sample when 
determining the correlation 
dimension. 

ctDesiredDistancesMax:ℵ Maximum count of desired distances 
to sample when determining the 
correlation dimension. 

strFigureName:ℵ See 
DetermineAndDisplayCorrDimensionFro
mTimeSeriesForRgEmbDims. 

ctEmbeddingDimension: ℜm The dimension in which to embed the 
synthetic structure. 

maskFigureType:ℵ See 
DetermineAndDisplayCorrDimensionFro
mTimeSeriesForRgEmbDims. 

ctSlopeEstimationGridpoints:ℵ The number of gridpoints used in 
slope termination for estimating 
the correlation dimension.. 

 
 Side effects   

Draws derivative of log C(ε) vs log ε on new graph. 
 Package Uses  

DetermineAndDisplayCorrelationDimFromSynthStructOnExistFig  
Notes  

 
 

SelectRandomDistancesFromNDimensionalStructureInSampleSpace 
 Informal description   

Randomly selects distances from a synthetic structure of 
dimension within a.  

Arguments  
ctStructureDim: ℜm See 

DetermineAndDisplayCorrelationDimFr
omSynthStructOnExistFig. 

ctEmbeddingDimension: ℜm See 
DetermineAndDisplayCorrelationDimFr
omSynthStructOnExistFig. 

ctDesiredDistances:ℵ See 
DetermineAndDisplayCorrDimensionFro
mTimeSeriesForRgEmbDims. 

 Returns 
Returns an array: ℜctDesiredDistances of random distances. 

 Side effects   
 Package Uses  

CreateDDimensionalVectorInNDimensionalSubspace 
Notes  

 
 
CreateDDimensionalVectorInNDimensionalSubspace 
 Informal description   

Displays the estimated derivative of log C(ε) vs. logε on a 
preexisting graph.  
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Arguments  
ctStateSpaceDim: ℵ Count of dimensions to populate 

with uniform values drawn from the 
interval [0 1].  All other vector 
components will have value 0 

ctStructureDim: ℵ Total length of vector. 
 Side effects   

None. 
 Package Uses  

None. 
Notes  

 
DetermineAndDisplayCorrelationDimensionFromTimeSeries 
 Informal description   

Displays the estimated derivative of log C(ε) vs. logε on a new 
graph for a particular dimension.  

Arguments  
aTimeSeries: See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctEmbeddingDimension: “Trial” embedding dimension in 
which to display the empirical 
estimate of the correlation 
dimension. 

ctDesiredDistances Count of distance samples to take 
when estimating the correlation 
dimension. 

strFigureName: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

maskFigureType See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctSlopeEstimationGridpoints See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

dMinIndexDist See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

 Return Values  
rgEpsilon See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesOnExistFig  

rgDEstimatedCofEpsilon See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesOnExistFig  

Side effects   
Creates a new figure window, displaying the estimated correlation 
dimension for different values of the normalized distance ε. 

 Package Uses  
None. 

Notes  
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6.2 Testing and Support Functions 
 
DetermineAndDisplayCorrelationDimensionFromSynthStructInRgEmbDim
s 
 Informal description   

Creates a synthetic structure, assesses its dimensionality at a 
specified set of trial embedding dimension, and displays the 
result on a new figure. 

 Arguments  
ctStructureDim: See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctDesiredDistances: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

strFigureName : See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

rgDims: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

maskFigureType: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctSlopeEstimationGridpoints: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

 Returned values  
rgDim: See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

rgrgEpsilon:  See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

rgrgDEstimatedCofEpsilon:  See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

 Side effects   
Displays a graph on a new structure. 

 Package Uses  
DetermineAndDisplayCorrelationDimFromSynthStructOnExistFig 

 Notes   
 
 
DetermineAndDisplayCorrelationDimensionFromSynthStructInEmbDims 
 Informal description   

Creates a synthetic structure, assesses its dimensionality at a 
specified set of trial embedding dimension, and displays the 
result on a new figure. 

 Arguments  
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ctStructureDim:  See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctDesiredDistances:   See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

strFigureName :  See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

iDimMin : See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForEmbDims. 

iDimIncrement :  See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForEmbDims.  

iDimMax:  See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForEmbDims. 

maskFigureType See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

ctSlopeEstimationGridpoints:  See definition in  
 

 Returned values  
rgDim: See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

rgrgEpsilon:  See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

rgrgDEstimatedCofEpsilon:  See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

 Package Uses  
DetermineAndDisplayCorrelationDimensionFromSynthStructInRgEmbDims 

Side effects   
Displays a graph on a new structure. 

Notes  
   
 
EstimateMaxEmbeddingDistanceFromTimeSeries 

Informal description   
Derives an estimated (approximate) maximum of the distances in 
the ctEmbeddingDimension-dimensional embedding of time series 
aTimeSeries.  This approximation is contracted through deriving 
the maximum of a bootstrapped sample of size ctSamplePairs within 
the embedding of aTimeSeries.  In particular, the function 
derives an approximation to the maximum by deriving the maximum 
of the distances between ctSamplePoints pairs of points each 
element of which is drawn randomly from the ctEmbeddingDimension 
embedding of aTimeSeries. 

 Arguments  
aTimeSeries:   See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 
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ctSamplePairs:  Set of randomly selected sample 
pairs between which to judge 
distances 

ctEmbeddingDimension: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesOnExistFig. 

 Package Uses  
None 

 Returned values  
dEstimatedMax: Estimated maximum distance in the 

data set, as judged from 
ctSamplePairs sample pairs drawn 
from aTimeSeries. 

Side effects   
None. 

Notes   
Not currently used by other functions. 

 
Display3DEmbeddingSpace 
 Informal description   

Displays a scatterplot of embedding of the given time series in 
3D. 

 Arguments  
aTimeSeries: See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

strFigureName: See definition in 
DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

dPointSize: ℵ Size of the datapoints to display. 
 Returned values: 

None.  
Side effects   

Displays a graph on a new structure. 
 Package Uses  

None. 
 Notes   
 
 
DLaggedCovariance 
 Informal description   

Determines the covariance between time series aTimeSeries and 
itself, lagged by index count iLag.  Using this function with 
iLag=0 will cause it to return of aTimeSeries. 

 Arguments  
aTimeSeries: See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

dLag: ℵ Lag with which to determine the 
coveriance. 

DetermineAndDisplayCorrelationDimensionFromTimeSeriesForRgEmbDims. 
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 Returned values  
The specified covariance (ℜ). 

 Package Uses  
None. 

Side effects   
None. 

 Notes   
 

DeriveExhaustiveNDimensionalEmbedding 

 Informal description   
Determines the covariance between time series aTimeSeries and 
itself, lagged by index count iLag.  Using this function with 
iLag=0 will cause it to return of aTimeSeries. 

 Arguments  
aTimeSeries: See definition in 

DetermineAndDisplayCorrelationDimen
sionFromTimeSeriesForRgEmbDims. 

dLag: ℵ Lag with which to determine the 
coveriance. 

DetermineAndDisplayCorrelationDimensionFromTimeSeriesForRgEmbDims. 
 Returned values  

The specified covariance (ℜ). 
 Package Uses  

None. 
Side effects   

None. 
 Notes   
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