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Behavioral Causes of Demand Amplification in Supply Chains: 
“Satisficing” Policies with Limited Information Cues 

 
Overreaction to supply shortages can create havoc in supply chains, costing millions of 

dollars in excess inventory and manufacturing capacity. In an experiment with the Beer 
Distribution Game, we explore overreaction to shortages as a complementary behavioral cause of 
supply chain instability. As in previous studies, we find that players ignore the supply line. We 
find, however, that instead of overreacting to shortages, players limit the size of their order 
adjustment while aiming for higher than necessary inventory level; a policy that is more stable 
than the linear response suggested in previous studies.  

Since an ordering rule that fails to account for the supply line leads to higher than necessary 
costs and order amplification, our results suggest that players are not fully rational. However, 
evaluating the performance of the estimated policy we find that, given the information cues 
available, players show bounded rationality and develop a “satisficing” replenishment decision 
rule that minimizes local cost at the expense of higher upstream cost. We explore the 
implications of these findings for the design of information and incentive systems for supply 
chain management. 

1. Introduction 

Supply shortages are common in supply chains, often taking place in industries characterized by 

costly capacity and long acquisition delays (Cachon and Lariviere 1999), and during the 

introduction of new products, when demand is uncertain, and new processes, when production 

yield is uncertain (Lee et al. 1997a). More important, shortages can lead retailers to order in 

excess of their needs (Armony and Plambeck 2003; Gonçalves 2003; Lee et al. 1997a; Sterman 

2000). The essence of over-ordering was captured by Mitchell (1924, p. 645) early last century: 

[R]etailers find that there is a shortage of merchandise at their sources of supply. 

Manufacturers inform them that it is with regret that they are able to fill their orders only 

to the extent of 80 percent. … Next season, if [retailers] want 90 units of an article, they 

order 100, so as to be sure, each, of getting the 90 in the pro rata share delivered.” 

As Mitchell suggests, when competing with other retailers for scarce supplies (i.e., horizontal 

competition), retailers inflate their orders to manufacturers seeking to improve their chances of 

obtaining the supply they need. Since manufacturers often sell to several retailers and shortages 

are common, overordering is a recurring problem in supply chains. Consider the following 

examples. Orders for DRAM chips skyrocketed after product shortages during the 1980s (Li 

1992). Apple Computer regularly experienced inflated orders that were cancelled as soon as 
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scarce products became available (Schneidawin and Cauley 1993) and Hewlett-Packard lost 

millions of dollars in unnecessary capacity and excess inventory following a post-shortage 

demand surge for its LaserJet printers (Lee et al. 1997b). More recently, Cisco Systems incurred 

a more than US$ 2 billion inventory write-off due to inflated retailer orders for its products 

(Adelman 2001).  

Behavioral decision theory provides clues about how commonly used heuristics (e.g., 

representativeness and availability) might prompt overreaction (Kahneman et al. 1982). 

Overreaction typically results from excessive extrapolation of perceived patterns in random 

sequences or occurs in response to a dramatic or vivid event. For instance, De Bondt and Thaler 

(1985; 1987) found evidence supporting the overreaction hypothesis in financial markets. Frieder 

(2003) showed that individuals extrapolate past strings of positive news and trade too 

aggressively too late in reaction to extreme earnings announcements. And Massey and Wu 

(2004a; 2004b) found that people overreact when faced with imprecise information about a 

slowly changing environment.  

In operations management, empirical studies have sought to capture overreaction in supply 

chains to explain the sources of the bullwhip effect: order amplification at each successive 

echelon upstream. Sterman’s (1989) investigation of managerial decisions using the Beer 

Distribution Game (BDG) revealed that subjects failure to fully account for orders-placed-but-

not-yet-received caused overordering. Several subsequent empirical studies have used the BDG 

to study factors influencing supply chain instability (Croson and Donohue 2002; 2003; Croson et 

al. 2004). A common finding across many of these studies has been the source of supply chain 

instability: players underestimate the supply line of orders placed but not received. This paper 

contributes to the empirical research on behavioral decision making within supply chains by 

articulating a complementary behavioral source of supply chain instability: overreaction in 

response to shortages.  

Despite the lack of retailer competition for scarce supplies in the BDG, but motivated by 

Tversky and Kahneman’s (1974) availability heuristic (i.e., the tendency to overreact to dramatic 
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or vivid events) we hypothesize that players over-order when a shortage occurs because a 

backlog (a) is more costly than holding inventory, and (b) causes great disruption to the supply 

chain. Backlog is salient in both the cost objective function and the week-to-week operation of 

the supply chain. BDG facilitators emphasize the cumulative nature and financial impact of 

backlogs, including disruptions and stress to downstream players in need of stock. Finally, 

typical player quotes like “You better have something big on the way, or else!” and “Send 

anything! Please! We are thirsty” and ample testimonials during game debriefings (Sterman 

1989) show that players become highly frustrated with the lack of supply, further increasing the 

appeal of the overreaction hypothesis. 

We structure the data from 25 beer distribution games as a cross-sectional time-series panel, 

allowing us to make estimations across individuals and echelons. Our estimated ordering rule 

provides stronger evidence than previous studies that players underestimate the supply line. In 

fact, we find no significant effect of the supply line in the decision rule for non-factory echelons. 

Contrary to our expectations, we find that players do not overreact when in backlog, instead their 

correction saturates at a maximum value; a policy more stable than the linear response to 

shortfall suggested in previous studies. Through simulations we find that the estimated policy 

does not differ in form and cost performance from the local-cost-minimizing policy with the 

information cues used by players. Players, however, aim for a higher desired inventory than the 

local-cost-minimizing-policy, resulting in order amplification. Given the information cues 

available, we find that players show bounded rationality and develop a “satisficing” 

replenishment decision rule that minimizes their local cost at the expense of amplifying the 

demand signal. These findings have implications for the design of information and incentive 

systems in supply chain management. From a theoretical perspective, the paper contributes to the 

research on behavioral causes of the bull-whip effect. Through our analysis we identify two 

behavioral causes of demand amplification complementary to underestimating the supply line: 

higher than necessary desired inventory and overreaction to backlog. Players’ preference for the 

former is consistent with the low backlog-to-inventory cost ratio used in the BDG. 
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The remainder of the paper is structured as follows. In the section that follows we explore the 

empirical research on the causes of supply chain instability and the challenges of decision 

making in dynamic environments. In §3 we present our experimental design, in §4 our methods 

and results. In §5 we perform sensitivity analysis on the estimated stock management policy, 

compare its performance to the local-cost-minimizing policy, and evaluate the impact of 

backlog-to-inventory cost ratio on the cost-minimizing policy and our findings. We conclude 

with a summary of our findings and exploration of the implications for supply chain management 

and behavioral decision theory.  

2. Dynamic Decision Making in Supply Chains 

Decision making in supply chain management is highly complex and dynamic. To deal with such 

complexity, analytical models traditionally assume that rational agents optimize a well-defined 

and commonly-known utility function. If these assumptions are violated, however, model 

prescriptions might fail. As several empirical studies suggest, failure to meet the prescriptions of 

rational models is often the norm in a wide variety of fields such as economics (Kahneman et al. 

1982; Plott 1986; Smith 1986), finance (Kahneman et al. 1986; 1990; Shiller 1981; Thaler 1988), 

marketing (Glazer et al. 1992) and operations management (Diehl and Sterman 1995; Schweitzer 

and Cachon 2000; Sterman 1989). Behavior remains sub-optimal even in dynamic environments, 

where the decision maker has supposedly the opportunity to identify and correct errors (Hogarth 

1981). Experimental research suggests that decision makers perform poorly in environments with 

significant feedback delays (Sterman 1987; 1989), feedback complexity (Diehl and Sterman 

1995; Schweitzer and Cachon 2000; Sterman 1989), and changing conditions (Kleinmuntz and 

Thomas 1987). Kleinmuntz (1993) concludes that decision makers are often “insensitive to the 

implications of feedback in dynamic environments.”  

Due to the dynamic nature of decision making in supply chain management, experimental 

research has the potential to address managers’ cognitive limitations, providing a descriptive 

theory of how managers behave while guiding performance improvement. Moreover, current 

discrepancies between descriptive and normative research findings addressing supply chain 
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instability calls for additional research. Consider the following examples. From a descriptive 

perspective, Sterman’s (1989) experimental study of decision making in the Beer Distribution 

Game suggested that agents’ inability to fully account for the supply line of orders placed-but-

not-yet-received was responsible for supply chain instability. From the normative perspective, 

Lee et al. (1997a) highlight four operational causes for demand amplification generated in supply 

chains by rational agents: demand signal processing; rationing (supply shortages); order batching; 

and price variations. In support of the demand signal processing explanation, Chen et al. (2000) 

showed that in the presence of order lead times a simple forecasting rule could lead to demand 

amplification. In a setting similar to that of the Beer Distribution Game, Chen (1999) demonstrated 

that a base stock policy whereby managers place orders equal to those they receive minimizes 

total supply chain cost and avoids demand amplification when the demand distribution is 

stationary and commonly-know. Further experimental research found, however, that demand 

amplification persisted in an idealized supply chain even after controlling for all four operational 

causes suggested by Lee et al. (1997a) (e.g., Croson and Donohue 2002; 2003), and occurs even 

when demand is fixed, commonly-known, and players start at the optimal inventory level 

(Croson et al. 2004).  

While the operational causes are important and clearly influence supply chain instability, even 

after controlling for them a number of behavioral reasons remain making the ordering decision in 

this dynamically complex environment far from trivial. For instance, it may be difficult to 

incorporate an information cue that is not readily available to decision makers, despite its 

importance to the task. Moreover, decision makers may generate only an incomplete set of 

possible decision rules or have faulty mental models about the environment (Kleinmuntz 1993); 

they may question if the optimal decision rule is commonly known and effectively used by other 

participants (Croson et al. 2004); and they may overreact in response to a dramatic or vivid 

event, as in the case of a sufficiently large order. This paper informs the research on causes of 

demand variability by articulating and analyzing a complementary behavioral source of 
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instability: overreaction in response to shortages. 

3. Experimental Design 

Our experiment utilizes a web-based version of the Beer Distribution Game developed at 

Harvard Business School that maintains the essential structure of the board game (Sterman 

1989). The game represents a serial supply chain with four echelons: retailer, wholesaler, 

distributor, and factory (R, W, D, and F, respectively). Each supply chain is independent of the 

other (echelons face no horizontal competition) and managed by a team charged with minimizing 

the supply chain cost. Each echelon incurs an inventory holding cost of $0.50 per unit/week and 

a backlog cost of $1.00 per unit/week. Shipment and order delays between echelons are two 

weeks and factories incur a one-week production delay with no capacity constraints. Players are 

randomly assigned, in pairs, to echelons (R, W, D, or F) and teams. Each simulated week players 

face the following sequence of events: (1) receive shipments; (2) fill customer orders, if 

sufficient inventory is available, otherwise accumulate a backlog; and (3) place an order with its 

supplier. Team members interact via a computer screen and, in contrast to the board version of 

the game, lack both visual access to the state of the supply line and knowledge of who their 

teammates are.  

The game is initialized in flow equilibrium: order and shipment flows are 4 units/week and 

each echelon starts with an initial inventory level of 12 units. Subjects are not informed about the 

shape of demand. A single time increase in retailer orders (a step input) is introduced in the 

second period (week), bringing orders to 8 units/week. To avoid end-of-horizon behavior the 

experiment is announced to run for a simulated year, but is, in fact, terminated after 36 weeks. 

The web-based version, by virtue of its automatic computation of order receipts, incoming 

orders, shipments, and inventory-backlog levels, can be run with less time pressure than the 

board version of the game on which a facilitator imposes the pace. The automatic recording of 

transactional data avoids reporting errors, although data entry (i.e., “typing”) errors are still 

possible.  

Our data set consists of 29 games played by first-year MBA students at Harvard Business 
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School during the fall of 2003. The game was played as part of the introductory course in 

operations management. We eliminated four outlying games from our sample. Three games had 

order variances above three standard deviations from the rest of the sample and one had a player 

with anomalous ordering behavior (consistent ordering of large quantities).i  

3.1 The stock management problem 
Sterman (1989) provided a general framework for the dynamic decision-making task of 

regulating a stock or system state and showed how that framework mapped into tasks as diverse 

as managing capital investments and personal energy level. This framework assumes a two stock 

structure with corresponding flows and a decision rule to manage the stock levels. Sterman 

proposed a simple, self-correcting decision making rule that uses information locally available to 

the decision maker and presumes no knowledge of the structure of the system. Specifically, 

managers are assumed to size orders to (1) replace expected losses from stock, (2) reduce the 

discrepancy between desired and actual stock, and (3) maintain an adequate supply line of 

unfilled orders (see Figure 1). The decision rule is formalized as: 

 

! 

Ot = MAX(0, ˆ L t +"S (S*
# St ) +"SL (SL*

# SLt ))  (1) 

where, to be consistent with the BDG, orders are constrained to be nonnegative. 

! 

ˆ L t  represents the 

expected loss from the stock, 

! 

St  and 

! 

SLt  the inventory and supply line positions at time t, 

! 

S*  and 

! 

SL*  the desired levels for stock and supply line, and the parameters 

! 

"S  and 

! 

"SL  the fractional 

adjustment rate for inventory and supply line, respectively. 

The remainder of this section explains how we revised the assumptions associated with each 

of the three components of Sterman’s stock management decision rule to support the testing of 

our hypothesis. 

Loss forecast. In his analysis of the decision rules used by BDG players, Sterman (1989) 

assumed adaptive expectations for the formation of the expected loss according to the 

exponential smoothing equation: 

 

! 

ˆ L t = "Lt#1 + 1#"( ) ˆ L t#1. (2) 

Defining 

! 

" =#SL #S and 

! 

S '
= S*

+ "SL*  Sterman obtained, for each player, maximum 
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likelihood estimates for the simultaneous equations 

! 

Ot = MAX(0, ˆ L t +"S ( # S $ St $%SLt ) + &t )  and 

! 

ˆ L t = "Lt#1 + 1#"( ) ˆ L t#1 subject to the constraints 

! 

0 "# "1 and 

! 

"S,S
' ,# $ 0 .  

Supply Line
(SL) Stock (S)

order rate
(O)

acquisition
rate

loss rate
(L)

Desired
Supply Line

(SL*)
Desired

Stock (S*)

Expected
loss (L^)

Adjustment
for Stock

Adjustment for
Supply Line

Indicated
Orders

+
+

+

+

+
-

-

+

+

 
Source: Adapted from Sterman (1989). 

Figure 1. Sterman’s stock management problem 

The joined estimation of these equations has the potential of shifting variance between the 

stock replenishment and forecasting equations, equations 1 and 2 respectively. Lower values of 

! 

"  make the forecast series more stable and shift the residual variance to the replenishment 

decision (eq. 1), thus potentially biasing its parameter estimates (Oliva 2003). Since we did not 

have access to the forecasting rules used by BDG players, we made the simplifying assumption 

that players were only paying attention to the latest order they received (arguably the most 

salient one) and assumed a simple lag forecast 

! 

( ˆ L t = Lt"1) , an implied 

! 

" =1 in the exponential 

smoothing model in equation 2. 

The simple lag forecast, an intuitive and plausible model of expectation formation 

(Kleinmuntz 1993), is consistent with the data and provided almost as good a fit as the optimal 

exponential smoothing. The simple lag assumption generated a reasonable forecast (0% Median 

Absolute Percent Error (MdAPE) and 23% Mean Absolute Percent Error (MAPE)) for a series 

with a coefficient of variation (

! 

" µ ) of 0.61 and had a Root Mean Square Error (RMSE) only 

9.5% higher than the optimal exponential smoothing forecast. ii  

Inventory adjustment. Sterman (1989) treated backlog as negative inventory and assumed a 

linear response to the gap between current and desired inventory. Because the cost of backlog is 

twice the holding cost for inventory, it is possible that subjects reacted differently to backlog 
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than to excess inventory. To test, with the simplest model possible, for the possibility of a 

different reaction to backlog, we assumed a piecewise linear model (Pindyck and Rubinfeld 

1998), introducing a dummy variable (

! 

Bt ) to reflect the backlog condition (

! 

Bt =1 if 

! 

St < 0; 0 

otherwise). Accordingly, the response to inventory is modified to 

! 

"S S*
# St( ) +"BStBt , where 

! 

"S  

represents the fractional adjustment rate for the inventory and 

! 

"B  the incremental adjustment due 

to backlog (i.e., the response to backlog is 
BS

!! +" ). Since 

! 

StBt " 0, 

! 

"B < 0  indicates a 

stronger reaction to the backlog condition (see Figure 2 for expected response to the inventory 

position and reaction to shortages). 

-!
S
+!

B

S
t

O
t

0

-!
S

S*

 
Figure 2. Order response to the inventory/backlog position 

Supply line adjustment. Finally, Sterman assumed a negative relationship between orders 

and the supply line and, accordingly, constrained to negative values the search space for the 

fraction of the supply line taken into account (

! 

"SL "S ). He found this fraction to be significantly 

different from zero in 66% of his subjects and 0 to be the estimated value for 20% of the players. 

The average estimated value Sterman found for 

! 

"SL  was -0.08 (

! 

"SL = #$"S = #0.34 *0.26), but 

he did not report the significance of this estimate. He attributed the observed bullwhip effect in 

the BDG to players ignoring the information in the supply line.  

We found a positive correlation between orders and supply line for the 100 players in our data 

set (r=0.26, p=0.000) that persisted when we split the sample by echelon, game, or player (see 

Table 1). The supply line being the cumulative difference between orders placed and shipments 

received, this positive correlation suggests an inverse causality from what Sterman estimated 
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(i.e., that the supply line is large because large orders have been placed) and we decided to test 

its significance by omitting it from our base model of replenishment decision and later 

introducing it under various assumptions of goal formation. 

Table 1. Correlation between orders and supply line, by echelon, game, and player 
 Corr[Ot,SLt] Sig.   Corr[Ot,SLt]>0 Corr[Ot,SLt]<0 

Retailers 0.24 0.000  Games (25) 25 0 
Wholesalers 0.28 0.000  % Sig. at 0.05 76%  
Distributors 0.41 0.000  Players (100) 92 8 
Factories 0.40 0.000  % Sig. at 0.05 53% 0% 

Summarizing, our base model preserves the non-negativity constraint in orders but assumes a 

simple lag as the expected loss from stock, allows for a different inventory response when in 

backlog, and ignores the supply line. We formalized this base model for each player as: 

 

! 

Ot = MAX(0,Lt"1 +#S (S*
" St ) +#BStBt )  (3) 

where 

! 

St , 

! 

S* , and 

! 

"S  still represent the actual and desired inventory level and the fractional 

adjustment rate for the inventory, respectively; 

! 

Lt"1 is the expected loss; 

! 

Bt  is the backlog 

condition; and 

! 

"B  represents incremental adjustment due to backlog. Defining 

! 

"0 =#SS
*, 

! 

"1 = #$S , and 

! 

"2 =#B , collecting terms, and allowing for an additive disturbance term yields a 

model with linear coefficients for inventory and the backlog condition: 

 

! 

Ot = MAX(0,Lt"1 + #0 + #1St + #2StBt + $t ). (4) 
4. Methods and Results 

We treated the BDG’s non-negativity constraint on orders as censored data. That is, we assumed 

that an order for zero could represent situations in which a subject wished to cancel a previously 

placed order (a negative order) but was restricted by the rules of the game to a minimum order of 

zero. Accordingly, we estimated the model using a tobit model (Tobin 1958). Finally, to estimate 

a decision rule that reflects the full range of observations available we structured the data from 

the games as a panel (cross-sectional time-series data set) with individual players the cross-

sectional unit (i) and week of decision the time index (t). There being no reason to suspect that 

individual differences can be captured by changes in the constant term, and subjects being 

clearly a sample from a larger population, we assumed random effects across individuals (Greene 
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1997). With the expansion for panel data, our base model became: 

 

! 

Oit = MAX(0,Lit"1 + #0 + #1Sit + #2SitBit + ui + $it )  (5) 
where ui is the random disturbance characterizing the ith subject. Estimations were performed 

using Stata’s (2003) implementation of the random-effects cross-sectional time series tobit 

model and we tested the significance of the model’s panel-level variance component (

! 

" u) by 

comparing the regression to the results of a pooled tobit regression. 

4.1 Base model 
Model I in Table 2 shows the estimated parameters for the base model together with the model’s 

log-likelihood value, significance (

! 

" 2), R2, and root mean percent error. The model is highly 

significant and explains 60% of the variance in orders; 4% of that variance is explained by the 

differences among individuals 

! 

" =# u
2 # u

2 +#$

2( )( ) and the panel-level variance is significant 

when compared to the pooled tobit model (likelihood-ratio test of 

! 

" u = 0). Although we found 

some evidence of autocorrelation in the residuals that suggests that standard errors of estimates 

might be biased and the results not as efficient, tests on the linear model (i.e., without the non-

negativity constraint) indicated that, for all regressions, the underestimation on the standard 

errors resulting from the autocorrelation was not large enough to affect the reported significance 

of the estimates—(in most cases the standard error of the estimates from the linear model 

matched that of the tobit model, and, when adjusting for autocorrelation in the residuals in the 

linear model, the change in the standard error of the estimates was in the third significant digit). 

Since estimates with autocorrelation are unbiased, the reported results can be safely interpreted.  

The fractional adjustment rate of inventory and constant estimates have the expected sign; the 

estimated value for desired inventory (

! 

S*
= "0 #"1 = 7.94 ) is consistent with one week of orders 

at the increased consumption rate; and the estimated fractional inventory adjustment 

(

! 

"S = #$1 = 0.21) is consistent with, albeit a bit lower than, values found in previous studies that 

estimated versions of the stock management model for individual players (

! 

" S = 0.26  in Sterman 

(1989) and 

! 

" S = 0.23 in Croson and Donohue (2002)). We were surprised, however, to find a 
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positive coefficient for the backlog response (

! 

"2 = 0.21). The combined response to a situation 

when inventory is in backlog (

! 

"1 + "2) is not significantly different from zero (see Backlog effect 

and its test in Table 2). This suggests that players in backlog place orders equal to the expected 

loss plus a constant amount (

! 

"0) proportional the desired inventory level 

! 

S*  (see Figure 3 for a 

schematic of the order response to the estimated model). Instead of “over-reacting” to a backlog 

situation as we had expected, players seem to ignore the backlog information cue and respond 

only to the 

! 

St = 0 signal. 

Table 2. Regression results 
   Model I  Model II 
 Regressor  Full  R W D F  ~F  Full ~F F 

! 

"1 Inventory/Backlog 
(

! 

St ) 
 -0.21  -0.14 -0.18 -0.20 -0.40  -0.17  -0.21 -0.15 -0.43 

   (0.01)***

* 

 (0.01)*** (0.02)*** (0.02)*** (0.03)***  (0.01)***  (0.01)*** (0.01)*** (0.03)*** 

! 

"2  Backlog (

! 

StBt )  0.21  0.15 0.22 0.19 0.34  0.17  0.21 0.18 0.31 
   (0.02)***  (0.03)*** (0.03)*** (0.03)*** (0.05)***  (0.01)***  (0.02)*** (0.02)*** (0.05)*** 

! 

"3  Supply line (

! 

SLt )           0.00 0.02 -0.09 
            (0.01) (0.01)** (0.03)*** 

! 

"0  Constant  1.69  1.30 1.74 1.60 3.05  1.44  1.60 0.77 3.99 
   (0.17)***  (0.29)*** (0.28)*** (0.44)*** (0.57)***  (0.17)***  (0.25)*** (0.26)** (0.67)*** 

                Log-likelihood value  -9426.0  -2161.7 -2367.5 -2455.3 -2128.1  -7193.6  -9425.8 -7188.4 -2123.3 

 Wald χ2  562.5***  110.7*** 113.5*** 139.5*** 261.0***  349.8***  559.1*** 348.2*** 275.5*** 

 R2(a)  0.60  0.16 0.43 0.49 0.77  0.43  0.60 0.43 0.77 

 RMSE  4.46  2.94 3.88 5.33 5.11  4.18  4.46 4.17 5.09 

               
 ρ  0.04  0.07 0.03 0.05 0.10  0.03  0.04 0.02 0.12 
   (0.01)**

* 
 (0.04)*** (0.02) (0.02)*** (0.04)***  (0.01)***  (0.01)*** (0.01)*** (0.04)*** 

               
 Backlog effect 

(

! 

"1 + "2 ) 
 0.00  0.02 0.04 -0.01 -0.06  0.01  0.00 0.02 -0.12 

 P(

! 

"1 + "2 =0)  0.92  0.47 0.01 0.45 0.03  0.41  0.73 0.01 0.00 

                Observations  3500  875 875 875 875  2625  3500 2625 875 

 Censored (Ot≤0)  520  30 76 154 260  260  520 260 260 

 Number of players  100  25 25 25 25  75  100 75 25 

Standard errors in parentheses: * significant at 10%; ** significant at 1%; *** significant at 0.1%. 
(a) R2=r2, where r is the simple correlation between estimated and actual orders (Wooldridge 2002).  
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L
t-1

+!
0

!
1
+!

2
=0

S
t

!
1

O
t

0 S*

L
t-1

S’

S*=!0/-!1 S’=(!0+Lt)/-!1  
Figure 3. Estimated model’s response to the inventory/backlog position 

When the sample is split by echelon (see R, W, D, and F models in Table 2), the base model 

is significant for all positions and all the estimates have consistent signs and are significant (the 

model with dummies for each position yields the same results as Model I and the coefficients for 

the three dummies are not significant). The seemingly paradoxical result that both the R2 and 

RMSE of the models increase as we move up the supply chain is explained by the fact that each 

successive stage the supply chain faces a demand stream with higher variance (see 

! 

" Lt#1
 row in 

Table 3) and, although the models explain a higher fraction of that variance (R2), the magnitude 

of the errors (RMSE) is increasing. In terms of parameter estimates, as a result of the differences 

in variance in demand each echelon faces, the aggressiveness of the inventory fractional 

adjustment (

! 

"S = #$1) increases as we move up the supply chain: the higher the variance of 

! 

Lt"1, 

the more aggressive corrections to deviations in inventory. Parameter estimates for the three first 

echelons (R, W and D), however, are not statistically different and the pooled model for these 

non-factory echelons (~F in Table 2) yields more efficient estimates, all within the standard error 

of the estimates for the separate models. Factories, whose stock management problem is 

structurally different from that of the other echelons—their delivery delay is shorter, and, 

because they are uncapacitated, it remains constant—have a significantly different replenishment 

rule with fractional adjustments to inventory more than twice as aggressive as the other echelons. 

The decision rule is, however, consistent across echelons as the other parameters adjust to 

accommodate the required aggressiveness of the fractional inventory adjustment—estimated 

values of 

! 

S*  for each sample partition are not statistically different (see Table 3)—and maintain 



   14 

an almost-flat response to the backlog condition (

! 

"1 + "2 # 0).  

Table 3. Demand variance and estimated parameters–base model and by echelon 
 Full  R W D F ~F 

! 

L t"1 7.59  7 .56 7 .68 7 .78 7 .76 7 .67 

! 

" Lt#1
 4.78  1.26 3.23 5.11 7.30 3.56 

        

! 

S*
= "0 #"1

(†) 7.94  9 .44 9 .63 8 .12 7 .56 8 .57 
S.E. 0.67  1.65 1.21 1.91 1.19 0.83 

 (†) Calculations based on the “delta method” (Oehlert 1992) values might differ from calculations based on 
coefficients from Table 2 because of rounding.  

To test the robustness of this unexpected result we tested each of the assumptions made on 

our model specifications. First, we tested the forecasting assumption and replaced the simple-lag 

forecast with static expectations (

! 

ˆ L ti = L* ), extrapolative expectations (

! 

ˆ L t = Lt"1 + #(Lt"1 " Lt"2), 

where 

! 

0 " # "1), and optimal adaptive expectations (

! 

ˆ L it = "iLit#1 + 1#"i( ) ˆ L it#1, where 

! 

"i  

minimizes the forecast error for each player). The almost-flat response to the backlog condition 

held under all forecasting assumptions. Second, we tested the non-linear shape of the response to 

inventory-backlog by testing different breakpoints for the piecewise linear model (the best fit 

was obtained when breakpoint is at S=0); introducing separate intercepts to the two line segments 

to decouple the inventory to the backlog response (second intercept was not significant), and 

testing different non-linear continuous responses (e.g., quadratic and logistic models)—all 

models generated a flat response to the backlog condition and none was as intuitive as the base 

model presented above. Third, we tested the censored data assumption and ran the model without 

the tobit constraint and found no significant change to the backlog response. Finally, we tested 

the aggregation assumption and ran the model, first, as a pooled data set (as expected from the 

small value of ρ, there were no significant change to the estimates), and then for each player 

independently: 84% of the players showed underreaction to backlog, and the model was 

significant for 67% of those players. The next section explores the impact of the supply line on 

the almost-flat response to the backlog condition.  

4.2 Response to supply line 
Model II in Table 2 shows the estimated parameters and performance statistics for a decision rule 

that incorporates the supply line signal: 
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! 

Oit = MAX(0,Lit"1 + #0 + #1Sit + #2SitBit + #3SLit + ui + $it )  (6) 
For the full sample, the coefficient for the supply line is not significant and introducing it into 

the regression has no effect in the other estimates. When we split the sample in factories and 

non-factories, the SL coefficient becomes significant, taking the expected negative value for 

factories but a positive value for non-factories. Nevertheless, the introduction of the SL as a 

regressor does not have a significant impact in the inventory/backlog adjustment fractions for the 

two sub-samples, and the models’ overall performance does not improve. When estimating 

model for individual players only 21% of the non-factories and 52% of the factories showed a 

significant negative response to the supply line. These results indicate that players consistently 

ignore the supply line, a finding stronger than Sterman’s (1989) that players underestimate the 

supply line. We believe that Sterman’s underestimation finding was obtained because he limited 

the search space for the SL coefficient to be negative. iii  

4.3 Summary of findings 
Our estimation strategy compares well to the strategy followed by previous studies with the BDG 

that estimate parameters for individual players (Croson and Donohue 2002; Croson et al. 2004; 

Sterman 1989). While Sterman’s (1989) study yielded average R2 and RMSE of 0.71 and 2.86 

respectively, it required four parameters per player (i.e., 176 parameters for 44 players) to 

achieve this result. Our most parsimonious model achieves an R2 of 0.60 and an RMSE of 4.46 

with only three parameters for 100 players, confirming that it is possible to make some 

inferences across individuals. More importantly, the panel data structure integrated data across 

individuals and echelons, allowing us not only to obtain more efficient estimators but also to 

make formal inferences and tests across populations.  

There are two interesting findings from this analysis. First, we found that players do not over-

order when in backlog. Instead of “over-reacting” and having a more-than-proportional response 

to a backlog situation, players’ adjustment saturates at a maximum, limiting the amount of 

amplification they introduce in the order stream. Second, our study confirms Sterman’s finding 

that players underestimate the supply line. We find, however, that while factories are capable of 
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keeping track of, and partially adjusting orders to, their supply line position (their response to the 

SL is similar to Sterman’s average estimate), players in echelons with variable delivery delay 

have a positive response to the supply line. Since the inclusion of the supply line had no effect in 

the responses to inventory and backlog, and we did not find any evidence of endogenous 

adjustments to the desired inventory (

! 

S*) and supply line (

! 

SL*) positions, this positive response 

among non-factories suggests periods of slight over-ordering.  

5. Sensitivity Analysis 

A decision rule that does not consider the supply line amplifies orders and increases overall 

chain cost. Because orders placed to correct for an inventory imbalance do not arrive 

instantaneously, on-hand inventory remains low and correction orders are placed again and again 

resulting, eventually, in an overshoot of the inventory level. However, a decision rule that has a 

flat response to backlog limits the amount of amplification it introduces to the order stream. To 

understand the effects of this limited response, relative to the inherent amplification that results 

from ignoring the supply line, we explored the impact of different parameters of the players’ 

decision heuristic on order amplification and cost. 

5.1 Sensitivity to decision parameters 
To test the sensitivity of the different elements of the stock replenishment decision rule we used 

a simulated order stream. We used correlated noise with 

! 

Ot = MAX 0,~ N µ,",#( )( )  where 

! 

µ = 8  

to reflect the steady state condition of the BDG; 

! 

" = 4  to approximate the incoming orders of 

our non-factory sample (see Table 3); and 75.1=!  the estimated autocorrelation time constant 

from orders received by non-retailers in our sample. We used two indicators to evaluate the 

performance of the decision rule. First, to assess the replenishment decision rule’s contribution to 

the bullwhip effect we measured order amplification as the ratio of the standard deviation of the 

outgoing order stream (the orders placed by the decision rule) to the standard deviation of the 

incoming order stream. Second, to capture the inventory and service levels that resulted from 

applying the decision rule we used the cost structure stipulated in the rules of the BDG—$0.50 

unit/week for holding inventory and $1.00 unit/week for backlog—to estimate the average 
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weekly cost.  

The simulated decision rule managed a position that faced, as in the BDG, a two-week 

information delay to communicate orders upstream and two-week transportation delay for orders 

to arrive. Because we assumed the supplier to have an infinite supply, any backlog incurred in 

this simulated environment is the result of structural delays and the decision rule. This 

assumption underestimates, relative to the BDG, the operating range for backlog for the 

simulated player. But because the decision rule does not take supply line into consideration and 

each decision made is based on the last period's order and current inventory/backlog position, the 

assumption does not affect the behavior of the decision rule per se and the results are comparable 

across simulations (tests with a model of the full supply line yielded qualitatively the same 

results).  

Univariate sensitivity. To test the influence of each decision parameter we performed Monte-

Carlo simulations, varying each parameter in isolation while maintaining the other parameters at 

the values estimated in the base case (Model I in Table 2). Each simulation was run for 300 

weeks and since the model was initiated in equilibrium both measures of performance were 

calculated using data from the full simulation horizon. Figure 4 shows the resulting amplification 

and average weekly cost of 1,000 simulations varying each parameter in the displayed range.  

The 

! 

"0 parameter represents the constant order quantity players would place in the absence of 

inventory and, with 

! 

"1, determines the desired inventory level (

! 

S*
= "0 #"1 ). Being a constant 

term this parameter has a slight impact on order amplification (Figure 4a). Higher values of 

! 

"0 

increase order amplification somewhat as the decision rule now has “more room” to adjust to 

excess inventory: with orders constrained to be positive the maximum inventory downsizing 

adjustment is limited to 

! 

"Lt"1 when 

! 

St " #0 + Lt$1( ) $#1  (

! 

St " S '  in Figure 3); a larger 

! 

"0 

increases 

! 

S '  and the operating range of the decision rule. As expected, the relationship between 

the target inventory level (

! 

S*) and cost is u-shaped (Figure 4a’)—lower values of desired 

inventory result in a higher probability of running into a backlog situation and higher levels of 
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inventory in excessive carrying cost.  
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Smooth line estimated by means of the locally weighted regression scatter plot smoothing (lowess) procedure using, 
for each point, 40% of the sample (Chambers et al. 1983). The lowess line seems to deviate from the center of the 
data in the range (-0.21,0) in panels b and b’ because the decision rule is unstable in that range and generated some 
extreme outliers. The deviation in panel d’ is the result of extreme cost values when β1→0. 

Figure 4. Univariate sensitivity of decision parameters—Monte-Carlo simulations 

The fractional adjustment of the inventory position (

! 

"S) is represented in the replenishment 

decision rule by 

! 

"#1. Note that the decision rule is not robust if the combined response to 

backlog (

! 

"1 + "2) is positive—if 

! 

"1 + "2 > 0  the order response to backlog becomes weaker as 

backlog grows, eventually shutting down orders and allowing backlog to grow, resulting in ever 

increasing weekly cost (see Figure 3)—thus, the relevant range for 

! 

"1 is (

! 

"#,"$2 ]. Figures 4b 

and 4b’ show order amplification and average weekly cost decreasing in 

! 

"1 (i.e., as inventory 

correction becomes less aggressive)—more negative values of 

! 

"1represent lower target inventory 

(

! 

S*
= "0 #"1 ) increasing the probability of running into backlog.  

Figures 4c and 4c’ capture the combined value of 

! 

"1 + "2 obtained by varying 

! 

"2while 

maintaining 

! 

"1 at its estimated value. As in the case with inventory adjustment, amplification 

and cost are increasing in the intensity of the backlog adjustment. Although increasing the 

aggressiveness of the backlog adjustment increases the variability of the results, the average 
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effect on performance is not as detrimental as when varying 

! 

"1. The minimum amplification and 

cost is obtained when 0
21
=+ !! , suggesting that for a decision rule that does not take supply 

line into consideration the optimal response to backlog is no response. Figures 4d and 4d’ show 

the sensitivity of the decision rule when varying both parameters simultaneously (

! 

"1 = #"2). 

Variations in the response to inventory have little effect on amplification. The cost function, 

however, is highly sensitive to the effect that 

! 

"1 has on the implied target inventory 

(

! 

S*
= "0 #"1 ). 

Multivariate sensitivity. To separate the mutual dependency among parameters in the 

decision rule we performed a sensitivity analysis, varying both 

! 

"0 and 

! 

"1 while holding to the 

assumption of no backlog response (

! 

"2 = #"1). Figure 5 shows the surfaces of average 

amplification and average weekly cost as functions of 

! 

"0 and 

! 

"1 for 50 realizations of the 

incoming order stream. The general trends of the response surface are clear. Amplification is 

increasing in 

! 

"0 and in the intensity of the fractional adjustment of inventory, but there is a 

minimum cost basin at 

! 

"0≈(0.5, 1.5) and 

! 

"1≈(-0.1, -0.2), values consistent to the ones estimated 

from our non-factory sample.  
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Note that x and y axes are reversed in the cost graph to give a better perspective of the response surface and that 

isocost curves are shown in the xy plane. Cost values have been truncated at 12 to show better details of the minimal 
basin.  

Figure 5. Multivariate sensitivity of decision parameters—Monte-Carlo simulations 

5.2 Comparison to local-cost-minimizing policy 
To further assess the performance of the estimated policy we compared it to the local-cost-
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minimizing policy with the same information cues. For 50 different order realizations we found 

through a grid search of the parameter space the parameter values that would minimize cost. The 

average values for the cost-minimizing parameters 

! 

"0
*, 

! 

"1
*, and 

! 

"2
* were 0.89, -0.14, and 0.14, 

with standard errors of 0.06, 0.01, and 0.02, respectively. Confirming our interpretation of the 

sensitivity analysis, we found that for the local-cost-minimizing policy the response to backlog 

was not statistically different from 0 (p=0.339 for 

! 

H0 :"1
*

+ "2
*

= 0). The response to the 

inventory position estimated from our non-factory sample (

! 

"#1 = #2 = 0.17) was slightly more 

aggressive than that of the local-cost-minimizing policy (p=0.003 for

! 

H0 :"1 = "1
*, and p=0.067 

for 

! 

H0 :"2 = "2
*), but the main difference between policies was that the estimated policy took a 

more conservative target inventory (

! 

So
*

= 6.36 < Se
*

= 8.47) to reduce the probability of backlog 

(p=0.001 for 

! 

H0 :"0 = "0
*).  

Evaluating the performance of the policies to 50 different order realizations revealed the 

average cost for the estimated rule to be only 2.5% higher than, the local-cost-minimizing policy, 

a non-significant difference (p=0.147 for 

! 

H0 : co = ce). Order amplification, however, was found 

to be 4% higher for the estimated policy (

! 

Ao =1.07 < Ae =1.12), a highly significant difference 

(p=0.000 for 

! 

H0 : Ao = Ae ). Note that the tests applied the estimated policy consistently 

throughout the simulation and that this consistency resulted in better performance than that of 

most players in our sample (Bowman 1963). Nevertheless, these results suggest that players were 

quite accurate in devising a rule that would minimize local cost given the information cues 

available. This cost minimization, however, came at the expense of increasing variance in 

upstream orders.  

5.3 Sensitivity to backlog-to-inventory cost ratio 
The results of the cost-minimizing policy suggest that a possible explanation for the flat response 

to backlog in our estimated rule is that while backlog is salient and twice as costly as inventory 

(i.e., a backlog-to-inventory cost ratio of 2) it is not costly enough to promote overreaction. 

Arguably real life costs associated with shortages (i.e., lost sales, lost goodwill, etc.) are much 
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larger than twice the inventory holding costs. To test this, we explored the behavior of the local-

cost-minimizing policy with the same information cues as the estimated rule through a range of 

cost ratios between 1 and 24. As above, we used a grid search to identify the parameter set that 

would minimize local cost. Figure 6 presents the general trend and standard errors for the cost-

minimizing parameters 

! 

"0
*, 

! 

"1
*, and 

! 

"2
*. As the backlog-to-inventory cost ratio increases, the cost-

minimizing rule adjusts by increasing the desired inventory level to reduce the probability of 

running into backlog; this is achieved by increasing 

! 

"0 since throughout the plotted range there 

is no sizable impact on the inventory response coefficient 

! 

"1. However, as desired inventory gets 

large enough to cover the order variance the benefit of increasing desired inventory decreases, 

resulting in a diminishing change rate for 

! 

"0. As the growth rate for 

! 

"0 decreases, 

! 

"2 begins to 

drop—suggesting more aggressive reaction to the backlog condition—and we see evidence of 

overreaction to backlog (

! 

"2 < 0 ) for cost ratios larger than ten. The “late adjustment” of 

! 

"2 in 

Figure 6 supports the hypothesis that the backlog-to-inventory cost ratio used in the BDG is not 

sufficient to cause overreaction to backlog. 
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Smooth line estimated by means of the locally weighted regression scatter plot smoothing (lowess) procedure 

using, for each point, 35% of the sample (Chambers et al. 1983). Error bars represent the standard error of the 
parameter for a sample of 50 different order streams for each cost ratio. 

Figure 6. Local-cost-minimizing policy’s sensitivity to backlog-to-inventory cost ratio 

6. Discussion 

We explored, in an experimental serial supply chain, the causes of the bullwhip effect by 
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proposing a complementary behavioral source of supply chain instability: overreaction to 

backlogs. The paper contains several contributions relative to previous work in this area. At the 

methodological level, refinements in assumptions and estimating techniques shed light on 

important aspects of the estimated decision rules for BDG players. First, by removing potential 

biases that could be introduced by the joined estimation of the adaptive expectations in forecast 

and the stock replenishment rule, and constraints in the feasible space for adjusting the supply 

line, we found even stronger evidence that players underestimate the supply line. Whereas 

previous work (Croson and Donohue 2002; Croson et al. 2004; Sterman 1989) suggested that the 

supply line was under-accounted for, we found no significant effect of the supply line in the 

decision rule for the non-factory echelons. Second, by structuring the data as a panel (cross-

sectional time series), we not only could make use of all the data available for estimating the 

replenishment decision rule, thereby increasing the efficiency of estimates and the 

representativeness of the resulting rule, but also perform analyses by echelon in the simulated 

supply chain. We found that as players faced increasing order variance (e.g., upstream in the 

supply chain) the inventory adjustment fraction became more aggressive. The estimated decision 

rule was nevertheless robust across echelons, yielding similar values for the desired inventory 

and response to the backlog condition. Third, exploring a non-linear response to the inventory 

position revealed that, contrary to our expectations, players do not seem to overreact when in 

backlog; instead, they have a measured response to it, saturating order adjustment at a maximum 

value. This result held across echelons and under various assumptions for the non-linear 

response, the forecasting process, and the aggregation and estimation procedures.  

The fact that players do not account for the supply line clearly indicates that they are not fully 

rational optimizers. An ordering rule that fails to account for the supply line will lead to order 

amplification. Because orders placed to correct for an inventory imbalance do not arrive 

instantaneously, on-hand inventory remains low and correction orders are placed again and again 

resulting, eventually, in an overshoot of the inventory level. Although the computation to 

estimate the supply line is simple (cumulative difference between orders placed and orders 
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received), the form players use to track inventory status and orders placed does not provide the 

space, nor is time given when playing the game, to perform this computation. The supply line 

information is not salient in the game cues, nor does it play a role in the cost function for the 

individual players; thus, it is not surprising that players tend to ignore it (Plous 1993). 

Furthermore, players are not completely naïve considering that they do not over-order when in 

backlog. By not responding to the backlog condition, players create an ordering policy that is 

more stable than the linear response to inventory discrepancies. When evaluating the 

performance of the estimated rule, we found that players act as boundedly rational using the 

information available to them in a policy that is not significantly different in form and cost 

performance from the policy that minimizes local cost. The estimated rule, however, aims to 

maintain a higher inventory level than the cost-minimizing rule. Higher desired inventory 

increases order amplification as it creates “more room” for the decision policy to adjust 

inventory and increase the size of order adjustment. Higher order variance, in turn, increases 

costs for upstream echelons. Our findings suggest that boundedly rational players adopt a policy 

that “satisfices” local cost minimization at the expense of upstream order amplification and 

higher team costs. The estimated ordering policy indicates a strong behavioral component to 

supply chain instability, i.e., it ignores the supply line and underreacts to backlog while aiming 

for higher than necessary inventory level. 

From a theoretical perspective, the paper contributes to the research on behavioral causes of 

the bull-whip effect. Our results suggest two additional components to demand amplification 

complementary to the underestimation of the supply line identified by Sterman (1989). First, 

higher desired inventory levels, when ignoring the supply line, increase the flexibility of the 

stock replenishment rule, allowing for larger corrections (i.e., higher order variability) in the 

order stream. Second, overreaction to backlog, i.e., placing orders beyond the proportional 

response to the inventory shortages, will clearly create demand amplification. In our sample we 

only found evidence of the higher-than-necessary desired inventory levels. This result, however, 

is consistent with the response of the local-cost-minimizing policy under the backlog-to-
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inventory cost ratio used in the BDG. That is, the backlog-to-inventory cost ratio used in the 

BDG was not high enough to trigger an overreaction to backlog in a cost-minimizing policy with 

the same information cues as the estimated rule. The impact of different backlog-to-inventory 

cost ratios on behavioral replenishment rules remains an area for future research. 

Our empirical findings have implications for the design of information and incentive systems 

in supply chain management. Failure to account for the supply line raises the question of whether 

access to relevant information improves the likelihood of its adoption and results in a more 

adequate framing of the decision rule. Previous research suggests that access to the relevant 

information cues alone is insufficient to guarantee its utilization. In Sterman (1987), Kampmann 

(1992), and Diehl and Sterman (1995) supply line information is fully visible and just as salient 

as other important cues, but the supply line information is still severely underestimated. 

Richardson and Rohrbaugh (1990) found that clearly emphasizing important information cues, 

instead of just providing access to it, could improve the outcome of the decision rules. When 

they advised participants to “adjust for prior orders not yet filled” and provided the outstanding 

order amount, performance improved. Interestingly, when they provided a reasonable judgment 

policy without the proper motivation for it, players did not use it. While further research is 

required, decision making in dynamic environments seems to benefit from clearly emphasizing 

relevant information cues.  

Analogously, although facilitators urge players to minimize total supply chain cost, local 

information and incentives shift players’ attention and the ordering rule accordingly. Formally, 

the game lacks a mechanism to bring global indicators (e.g., the costs of amplifying upstream 

orders) to the forefront and, by making them more salient, increase the likelihood that they will 

be incorporated on the decision rule. Here too, lack of access to amplification cost information 

and clear understanding of its role likely justifies its absence from the adopted decision rule. 

Emphasizing the impact and cost of order amplification to upstream players might be an 

effective way to make the relevant information cues more salient. One possibility may be to 

contrast estimated team costs achieved using different policies by estimating the cost impact 



   25 

caused by upstream order amplification. The individual savings achieved by attempting to 

minimize local costs may be greatly overshadowed by higher team costs imposed due to 

increased order amplification to upstream players. Although it is now standard practice in supply 

chain design to account for supply line information and to increase inventory visibility 

throughout the chain, managers still attempt to optimize locally despite the detrimental impact 

that their decisions may have on the whole supply chain, including themselves through numerous 

different feedback mechanisms. Currently, managers do not internalize the impact that their 

decisions may have on upstream players and indirectly on themselves. However, by considering 

the cost of upstream order amplification (or other relevant information cues in a different 

context), managers may be able to improve their policy decision and performance. Access to 

information alone may prove less useful than understanding its impact on supply chain 

coordination. A promising area for further research is the role that emphasizing information cues 

or adequate motivation of specific decision policies might have on decision making in dynamic 

environments. 
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i In this web-based version of the game orders are limited to the [0,99] range but players are 
not aware of the upper-limit unless they attempt to place an order greater than 99, in which case 
the software truncates the order and informs the players about it. Not revealing the upper limit 
ensures that players do not self-constraint the size of their orders based on this additional 
information cue. All orders in the 25 games in our sample were for less than 99 units. 

ii We tested the significance of the exponential smoothing as a predictor using the result that 
the moving average (MA) coefficient 

! 

"( )  of an ARIMA (0,1,1) model is equivalent to the 

smoothing parameter in a single exponential smoothing 

! 

" =1+#( )  (Chatfield 2001). Applying 
the ARIMA (0,1,1) model to the loss series, we found the MA coefficient to be significant for 
only 14% of the players. That is, only for 14% of the players was 

! 

"  found to be different from 
one. The optimal exponential smoothing forecast was determined by finding the value of 

! 

"  in 
equation (2) that would minimize the forecasting error for each player. 

iii A potential explanation for the positive and significant coefficient of the supply line for 
non-factories is that it reflects the net effect from a decrease in orders due to a large supply line 
(the expected negative coefficient) and an increase in orders due to a higher desired supply line 

(

! 

SL*). Assuming an endogenous goal formation as a function of the loss forecast (

! 

St
*

="S + # S
ˆ L t  

and 

! 

SLt
*

="SL + # SL
ˆ L t) in Sterman’s original equation (eq. 1); replacing 

! 

"0 =#S$S +#SL$SL , 

! 

"1 = #$S , 

! 

"3 = #$SL  and 

! 

"4 =1+#S$ S +#SL$ SL ; and reintroducing the backlog, panel and random 
variation terms, yields the linear model 

! 

Oit = MAX(0,"0 + "1Sit + "2SitBit + "3SLit + "4
ˆ L it + ui + #it ) . Under the endogenous goal formation 

hypothesis   

! 

"S,# S ,"SL ,  and # SL $ 0 , thus we would expect 

! 

"4 #1. We rejected this hypothesis 
since this model for the non-factories in our sample yielded 

! 

"4 = 0.77 (S.E.=0.03), i.e., p=0.999 
for H0: 

! 

"4 <1. 


