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Abstract 

 
This paper explores the problem of fragmenting social networks enabled by spatial 

distancing between distinct socioeconomic classes.  Such fragmentation is evidenced by the 

experience of urban sprawl without population growth.  We develop a prototype model to 

examine the spatial dynamics of social network evolution in the face of neighborhood migration.  

This model draws upon the small world analogy by using an initial template of connections that 

are “rewired” over time.  Spatially, connections are established for neighborhood proximity. 

Socially, connections are added based upon similarity of economic class.  Migration patterns 

thus affect the probability of rewiring social connections.  In effect, the probability of rewiring 

becomes endogenous as the network evolves over time.  Analyses are conducted to explore the 

relative cohesiveness of the emergent community networks, and the income differentials between 

neighborhoods.  The development of this abstract model is discussed in relation to further 

application and calibration to a real-world case community. 

 
Introduction 

 
Even in the absence of population growth, many communities continue to experience 

urban sprawl, or low-density fringe development.  Since one’s ability to move to a new home 
usually requires an income well above the poverty level, new development serves to separate 
those who can afford to choose from those who cannot.  In this way, sprawl dynamics exacerbate 
spatial disparity between socioeconomic classes.  But underlying the aggregate tendency of 
sprawl is the individual choice of where to live.  For a current resident, this is a choice of 
whether to stay or leave a neighborhood in favor of another neighborhood or another community 
altogether.  For a newcomer, this is a choice of where to settle upon arrival.  In aggregate these 
choices shape the spatial and temporal dimensions of urban dynamics such as sprawl and its 
accomplice, spatial disparity.  As evidenced by the presence of urban sprawl in the absence of 
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population growth, such social fragmentation becomes a concern for community efficacy in 
establishing new economic opportunities and for potential sources of conflict between sub-
communities.   

The recursive effect of social networks on neighborhood choices becomes difficult to test 
due to the inherent impracticality of experimenting with policies on a real community.  Virtual 
experimentation via computer models is therefore a logical if not essential choice for exploring 
the effects of social networks on neighborhood choice over time.  While a computer model will 
not predict the future of a real community, it is the only practical means of testing alternative 
assumptions and policies in an internally consistent framework.  And it is this process of 
modeling and testing, this virtual experimentation, which offers opportunities for insight or 
surprise relative to expectations. 
 
Background 

A social network refers to a set of interpersonal relationships.  In this case, the 
relationships are considered to be communication links that evolve in the face of neighborhood 
and community migration.  Although networks are powerful, they are difficult to define and 
measure, let alone simulate over time.  Research on social networks has tended to be 
ethnographic (Rowe and Wolch 1990, Gilbert 1998), empirical as in much of social network 
analysis (Wasserman and Faust 1994), or abstract as for emerging simulation techniques (Watts 
and Strogatz 1998, Barabasi and Albert 1999).  Emerging indirect estimation techniques (Conley 
and Topa 2003) enable calibration of abstract models from spatial socioeconomic data. 

The study of social networks is rich with methods of structural analysis that are based 
upon graph theory as invigorated in large part by Erdos and Renyi (1960).  Social networks 
enable a purely relational perspective, where the biggest challenge is in identifying relationships 
to be analyzed.  For the proposed research, the relationship is one of communication.  Two areas 
of emerging research involve spatial and dynamic social networks. 

 
Social Networks are Dynamic 

The dynamics of social networks may be considered in two ways – the dynamics of 
behavior within a network structure, or the evolution of the network itself over time.  To connect 
structure with dynamics, White (2004) presents a synthesis of social network theory in relation to 
social dynamics, including a detailed conception of how statics and dynamics operate in balance 
through many patterns witnessed in social network theory.  In a related work, White et al (2004) 
focus on cohesive network topologies in both organizational contexts and emergent fields, and 
the ways in which these interact.  Applying an epidemiological notion of diffusion to the social 
context, Granovetter (1978) demonstrates the utility of threshold models in understanding 
collective behavior.  Social thresholds refer to the minimum fraction of one’s peers who have 
made a decision before the individual in question does.  In a similar manner, Crane (1991) 
utilizes a contagion model to examine the nonlinear social effects of neighborhood dynamics as 
behaviors transmit among members. 

Epstein and Axtell (1996) introduce ways in which simulated agents can represent human 
connections and interactions over time.  Indeed, they emphasize the importance of transients and 
dynamics more than the quest for equilibrium conditions.  With a similar approach to modeling, 
Young (1998) focuses on theory underlying such individual-based conceptions and the 
institutions that result from such interaction.  The extent to which individual preferences are 
selfish or altruistic has also been examined in recent simulation studies (Bowles 2001, Lazar et al 
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2002) of the simultaneity and reflexivity of network evolution and individual preference 
evolution.  These studies reveal not only that trends toward conformity within groups can sustain 
difference between groups (see also Young 2001), but also that within-group cohesion may result 
from socially influenced altruism that runs counter to selfish motives.  Moreover, Lazar et al 
(2002) note the importance of being able to detect others’ type that enables homophily in the first 
place.  In a related study, Macy et al (2003) examine how polarization or segregated clustering 
can occur in the absence of resource competition.  They encode an attractor network in their 
model, such that agents are attracted to others of similar states and are also influenced by others.  
While a novel approach, their work is consistent with prior findings of polarization under the 
principles of structural balance. 

Watts (1999a, 1999b) and Watts and Strogatz (1998) explore self-organizing dynamics of 
network formation, emphasizing that where self-organization occurs, the resulting structure lies 
between randomness and order.  The prime example of such a mix of randomness and order is 
the small world network inspired by Milgram (1967), in which local clusters are dense but are 
connected globally through a few cross-cutting links between hubs.  Accordingly, Watts (1999a) 
developed algorithms for evolving small worlds in which interpersonal connections are locally 
dense (e.g., most of my friends are also friends) but globally sparse (e.g., everybody is not 
directly connected to everybody else).  This small world lies in interesting region between 
complete subgroup isolation and complete network connectivity.  While the suitability of the 
small world structure to describe real-world social networks is still under evaluation, it is one of 
the most promising quantifiable theories of social structure.  A critical element of Watts’ (1999a, 
1999b) small world formulation is a probability of “rewiring” social connections from an 
initially ordered structure (usually a ring lattice of one-dimensional connectivity). 

The study of network dynamics adds complexity to social network analysis, a field that is 
already full of techniques to test social relationships.  And yet, as evidenced by the above 
literature, it offers the prospect of additional insight in understanding the simultaneity of how the 
network influences the individual, and how the individual influences the network.  By exploring 
relationships at the level of individual interaction, we can learn about behavior over time at both 
micro and macro social network scales of analysis. 
 
Social Networks are Spatial 

Stanley Milgram (1967) conducted an inherently spatial social network experiment that 
came to undergird the small world theory as extended above by Watts (1999a, 1999b).  Milgram 
gave research participants in Kansas and Nebraska a letter describing a target person in 
Massachusetts.  If the participant knew the target on a personal basis, he/she was asked to send 
the letter directly to that person.  Otherwise, the participants were to give the letter to a personal 
acquaintance who was more likely to know the person.  Of the letters that were returned, the 
median number of intermediate links was 5.5, rounding up to the cliche “six degrees of 
separation.”  What is striking about Milgram’s research is that it was inherently geographical in 
nature, intended to measure social distance spanning geographic locations between arbitrarily 
chosen individuals.  And yet the subsequent research in social networks has tended to involve 
purely “relational” space, without consideration of geographic distance. 

Spatial simulations of neighborhood networks date back to the cellular automata 
simulations of Hagerstrand (1965) and Schelling (1971, 1978). Cellular automata are discrete 
cells located on a grid that update their state based on their previous state and the state of their 
neighbors (Shalizi 2003).  Cellular automata are a sort of precursor to the more richly structured 
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decision rules of mobile interactive agents.  Hagerstrand (1965) utilized empirical data on 
telephone network density to explore stochastic simulations of spatial diffusion of farming 
subsidies in Sweden.  Schelling (1971, 1978) employed an abstract cellular framework for 
examining the emergence of segregation from low thresholds of preference for similar neighbors.  
While such simulation utilizes abstract space in the form of a uniform grid of household 
locations, it enables the development of intuition about the conditions under which spatial 
clustering emerge and the degree of contingency in its patterns.   

In a related abstract spatial simulation, Arthur (1988) explores the uniqueness that can 
play out as a result of historical path dependence from industrial location decisions.  While 
Arthur (1988) illustrates the potency of a simplified abstract model, geographers with expertise 
in Geographic Information Systems (GIS) are ready to add realism to spatial simulations.  Dibble 
and Feldman (2004) present a computational laboratory in which simulated agents may interact 
in networks across abstract or empirical space using GIS templates.  

 

 
Figure 1.  Example Template for a Spatial Social Network. 

This template demonstrates how a social network may be embedded in 2-dimensional space.  In 
this case, houses are distributed uniformly across a grid between two neighborhoods.  The social 
links of one house from each neighborhood are shown.  While links are predominantly contained 
within each house’s neighborhood, they expand beyond direct neighbors and may ultimately 
connect across neighborhoods through boundary households.   

 
The template in Figure 1 above is an abstraction that simply represents location in space 

as residential location.  Social links are strong in broad domains (“neighborhoods”), though not 
restricted to adjacent neighbors (as in the Schelling 1971, 1978 case).  This is a juxtaposition of 
the relational space of the social network as visualized in 2-dimensional space.  The argument 
that social networks are spatial is at once obvious and yet superficial to sociologists who have 
resisted it with a pure focus on relational space instead.  And as geographers recognize, life space 
is far from Euclidean (Adams 1995).  Yet abstractions of space in just two dimensions can prove 
pragmatic for navigating our world, much as abstractions of relational space in social networks 
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are relevant to human understanding.  The combination of these spaces offers a way to make the 
small world (Watts 1999a) rewiring probability endogenous in a spatially explicit environment 
that incorporates individual choices about whether to leave neighborhoods.  A major contribution 
of this research to the field of social network analysis is this dynamic evolution of networks in a 
spatially explicit environment. 
 
Methods 

 
To prototype and test a variety of virtual experiments, we utilize the AnyLogic1 modeling 

software.  AnyLogic has several features that make it attractive for use in simulating spatial 
social dynamics such as this.  While it is Java-based and therefore compatible with existing 
models built in Java environments such as RePast2, AnyLogic has a more intuitive user interface 
for nonexpert programmers.  Although it is commercial software, simulations are easily exported 
as Java applets for broader dissemination.  Functionally, it incorporates the hybrid approach with 
building blocks for both discrete and continuous functions.  Sensitivity testing and optimization 
are facilitated through an experiment setup, and agent parameters may be imported from a broad 
suite of probability distributions.  Although it contains many simplifications for novice users, the 
model’s underlying code exports easily for expert examination. 
 Two choice formulations are central to the model structure: friendship and neighborhood 
choice.  Discrete choice probabilities may be represented mathematically by the convenient logit 
formulation (Ben-Akiva and Lerman 1985).  Equation 1 utilizes a binary logit formulation to 
represent the choice of whether or not to gain a friend (if the switch s is negative), or whether or 
not to lose a friend (if the switch s is positive).   
 
Equation 1.  Binary Logit Formulation for Friendship Choice 
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where 
 Pij  = Probability that person i will choose person j as a friend 

Pbase  = Baseline probability (neighborhood dependent) 
s  = Switch (-1 if making a friend, +1 if losing a friend) 
Ii, Ij  = Individual annual income of person i and of person j 
Imax = Maximum possible annual income, $60,000/year 
Imin = Minimum possible annual income, $20,000/year 

 
The friendship choice is socioeconomic due to the relative income portion of Equation 1.  

At the start of the simulation, each agent is assigned an income between $20,000 and $60,000 
per year.  This income does not change over time, and is simply a continuous representation of 
socioeconomic differences.  A large difference between the incomes of two agents increases the 
likelihood of the friendship ending, and decreases the likelihood of a new friendship beginning.   

                                                 
1 http://www.xjtek.com 
2 http://repast.sourceforge.net 
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The spatial element of friendship choice derives from the baseline probability, which is 
neighborhood dependent.  We define a parameter Fout to represent the preference for friendships 
outside one’s current neighborhood.  A balanced preference in the two-neighborhood model 
would invoke Fout of 0.5.  In contrast, an unbalanced preference favoring one’s current 
neighborhood would invoke Fout < 0.5.  The results presented in the next section compare an 
unbalanced Fout of 0.3 with the balanced case.  The balanced case relies solely on socioeconomic 
preferences, while the unbalanced case involves both socioeconomic and spatial preferences.  
Both cases have spatial implications, however. 

The network of friendships developed through the friendship choices in Equation 1 
become part of the neighborhood choice formulation expressed in Equation 2.  The probability 
that an agent will choose a different neighborhood is a function of affordability and utility.  
Affordability is expressed as one’s income relative to the neighborhood average income.  This 
value could vary between 1/3 (least affordable) and 3 (most affordable) due to the minimum and 
maximum incomes of $20,000 and $60,000 respectively.  The affordability of one’s current 
neighborhood is “grandfathered” as unity, however. 
 
Equation 2.  Neighborhood Choice Formulation 
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where 
 Pni = Probability that person i will choose neighborhood n 
 ani  = Affordability of neighborhood n to person i (1 if current neighborhood) 
 Uni = Utility of neighborhood n to person i 
 In = Average annual income in neighborhood n 
 Fni = Number of friends that person i has in neighborhood n 
 
 As expressed in Equation 2, neighborhood utility derives from income-based 
attractiveness and the individual’s fraction of friends in the target neighborhood.  The income-
based attractiveness (the first component of the utility equation) is neighborhood-specific and 
designed to vary between zero and unity.  If the neighborhood average income is $20,000 (Imin), 
attractiveness is zero; if neighborhood average income is $60,000 (Imax), attractiveness is unity.  
While neighborhood attractiveness is universal, the friendship fraction is unique to each 
individual.  Recall from Equation 1 that friendships reflect spatial and socioeconomic 
preferences. 

The evaluation frequency is critical for understanding the dynamics of neighborhood and 
friendship choice.  In our baseline case, we define the rate of evaluating neighborhoods to be 
exponentially distributed around once in 100 months (8.3 years).  The stochastic distribution of 
times enables asynchronous evaluation by individual agents.  Whether or not a move is made 
depends upon whether the probability in Equation 2 is greater than a randomly generated number 
between 0 and 1, and whether houses are available in the target neighborhood.  If a move is 
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made, the agent moving updates their friendship network by making one friend and losing a 
friend according to Equation 1.  In addition to the neighborhood evaluation, agents update their 
network at a rate that is ten times more frequent (once in 10 months in the baseline case), and is 
also stochastic under an exponential frequency distribution.  The friendship network is adjusted 
with a 50% probability at each evaluation point.  Friendships are made or broken stochastically 
to adjust toward a target number of five friendships per person. 
 
Results 

 
 The simulation results that follow are based upon the two-neighborhood template 
illustrated in Figure 1, with 200 total houses and agents of varying incomes assigned randomly to 
houses at a 90% occupancy rate.  Agents are connected using a random network (Erdos and 
Renyi 1960) designed to have five average friendships per agent.  The random initial network, 
layout, and stochastic dynamics are fixed using a random seed for comparative purposes. 
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Figure 2.  Effect of Balanced and Unbalanced Neighborhood Preferences on Income Gap. 

Income gap is the difference in average income between the two neighborhoods.  The raw value 
of the income gap is positive or negative depending on which neighborhood is more affluent on 
average.  The balanced neighborhood preference is based upon Fout of 0.5, such that the baseline 
probability is 50%.  In contrast, the unbalanced neighborhood preference is based upon Fout of 
0.3, such that the baseline probability of choosing friends outside one’s neighborhood is 30%, 
versus 70% within one’s own neighborhood.  Although the balanced case exhibits more 
oscillation between neighborhoods over the simulation, the intensity (absolute value) of the 
income gap is greater than the unbalanced case on average.  These simulations utilize the baseline 
(low) evaluation frequency of 100 months for moving and 10 months for network updates. 
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A measure of spatial disparity is reflected in neighborhood income gap (Figure 2).  
Neighborhood income gap simply compares the average neighborhood incomes at each point in 
time.  The dynamic simulation results for neighborhood income gap are illustrated in Figure 2 for 
the balanced and unbalanced cases with preferences for the fraction of friends outside one’s 
neighborhood, Fout, set to 0.5 and 0.3 respectively.  The balanced case therefore only invokes 
socioeconomic preferences in the friendship choice.  However, both cases illustrate strong spatial 
dynamics as measured by the income gap between neighborhoods.  Over the simulation horizon 
of 1000 months (83 years), the balanced case involves strong income gaps that oscillate as the 
concentration of affluent individuals shifts from one neighborhood to the other.  The unbalanced 
case retains a single neighborhood bias for longer, but with weaker income gaps.  Invoking only 
the element of socioeconomic preference therefore has stronger spatial implications for 
socioeconomic disparity. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700 800 900 1000

Time (Months)

C
o
h
e
s
io
n
 (
U
n
b
a
la
n
c
e
d
 C
a
s
e
)

More Frequent

Less Frequent

 
Figure 3.  Effect of Evaluation Frequency on Cohesion under Unbalanced Preference. 

Cohesion is measured as the fraction of social links that span across neighborhoods.  The 
evaluation frequency has an effect on the average cohesion over time.  For the less frequent 
evaluation of 100 months (~8.3 years) for moving and 10 months for network updates, the 
average cohesion is 0.205.  In contrast, the more frequent evaluation of 10 months for moving and 
1 month for network updates exhibits a higher average cohesion of 0.304.  These simulations are 
conducted for the unbalanced neighborhood preference based upon Fout of 0.3, such that the 
baseline probability of choosing friends outside one’s neighborhood is 30%, versus 70% within 
one’s own neighborhood.   
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 A measure for spatial fragmentation is reflected by the cohesion measure (Figure 3), 
where cohesion is the cumulative fraction of social links that span neighborhood boundaries.  
Cohesion is the opposite of fragmentation, such that when cohesion is low, fragmentation is 
high.  Figure 3 compares the effect of evaluation frequency on the overall level of cohesion 
under the case unbalanced neighborhood preferences (Fout = 0.3).  Network cohesion initializes 
near 50%, but declines over time as it approaches a dynamic equilibrium.  In the case of more 
frequent neighborhood and network evaluation, the average cohesion is approximately 0.3.  In 
the less frequent (baseline) case, average cohesion is approximately 0.2.  Therefore, evaluation 
frequency has an impact on the overall cohesion level.   

Further sensitivity testing is necessary to assess the extent to which these results are 
generalizable under a variety of random settings.  Specific results such as the approximate 
equivalence of cohesion to Fout in the higher frequency case may be related to questions of path 
dependence.  Path dependence, the extent to which a result depends upon initial conditions, is 
expected be less significant under high frequency of evaluation, and under conditions of 
balanced preferences. 
 
Table 1.  Effects of Evaluation Frequency and Neighborhood Preference on Cohesion and Income Gap. 

 Less Frequent More Frequent 

Balanced Preference 
(Fout = 0.5) 

Higher: 

Avg. Cohesion (0.495) 
Avg. Income Gap ($1570) 

Lower: 

Avg. Cohesion (0.466) 
Avg. Income Gap ($1277) 

Unbalanced Preference 
(Fout = 0.3) 

Lower: 

Avg. Cohesion (0.205) 
Avg. Income Gap ($1135) 

Higher: 

Avg. Cohesion (0.304) 
Avg. Income Gap ($1334) 

 
Table 1 above summarizes the effects of evaluation frequency and neighborhood 

preference on cohesion and income gap.  These results reflect parameter variations under the 
identical random seed conditions.  In contrast to the income gap displayed in Figure 2, the 
income gap averaged in Table 1 is based on the absolute difference at each point in time, not raw 
values.  These results reveal that our model formulation prevents high spatial disparity (income 
gap) from coexisting with high fragmentation (low cohesion), as average values for both 
cohesion and income gap vary in the same direction for each case.  The highest cohesion and 
income gap occurs in the less frequent, balanced preference case.  The lowest cohesion and 
income gap occurs in the less frequent, unbalanced preference case.  The effect of frequency 
depends upon whether neighborhood preference is balanced. 
 
Discussion 

 
 We conclude that the income-based attractiveness is stronger in the utility equation when 
neighborhood preferences are balanced.  This occurs because the second term of the utility 
equation (the friendship fraction) averages to 0.5 in the balanced case, versus 0.7 in the 
unbalanced case.  Those who can afford to move to the more attractive neighborhood do so, 
producing an agglomeration of higher income individuals in the attractive neighborhood.  At the 
same time, balanced preferences result in a higher cohesion level, so that spatial disparity and 
fragmentation do not coexist at their extremes under this formulation. 
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Extensions 

Alternative constructions of this model will include variants of small worlds and scale 
free networks that evolve with neighborhood and community migration.  These networks will be 
tested for tipping points of fragmentation in the face of alternative migration probabilities.  
Sensitivity testing will be conducted with varying migration parameters under this endogenous 
rewiring to explore the relative cohesiveness of the emergent community networks.  The 
development of this abstract model will then be extended to the real-world case community of 
Danville, Illinois.   

The socioeconomic and spatial assumptions underlying network connectivity may be 
derived from census data as integrated into the model with Geographic Information Systems 
(GIS).  Additional GIS data include zoning information and business analysis (if possible, a 
master plan of zoning changes will be obtained from the community).  While GIS census data 
are available for areas such as census tracts or blocks, such data will be disaggregated to 
correspond to individual households.  Two methods of disaggregation will be considered: the 
first is with parcel data, which may be available in GIS form by the city of Danville.  However, 
such parcel data are not uniformly available nationwide at this time (though a national parcel 
database is under construction).  The second method is with programming algorithms to assign 
household locations within the tract or block area in either a random or arranged manner.  Such 
algorithms are transparent and transferable to other study sites.  Moreover, accuracy of 
household location is not of primary concern, as the social networks that emerge will be based 
more broadly on neighborhood proximity, rather than immediate adjacency.  This is not to say 
that immediate adjacency is not a factor in real-world networks, just that for approximating an 
entire community using census area-based data, accuracy is relegated to broader resolution. 

To demonstrate the viability of locating households in space with an algorithm, we will 
first attempt to obtain household location via parcel data or as derived from aerial photography.  
Simulation results from this exact location method may then be compared with simulation results 
from the assignment algorithm to demonstrate whether or not location accuracy arises as an issue 
in this model.  In any case, converting the census counts into specific locations in space enables 
readier translation into the AnyLogic modeling software described earlier. 

As individual household objects are located in space, they retain identification with 
census tracts or block groups.  Such identification enables heterogeneous parameterization of 
attributes based upon distribution of counts recorded in the census (e.g., 10 households with 
income less than $20,000, 5 houses unoccupied, etc.).  Regardless of exact point location, 
accuracy of assignment is achieved only at the broader level of census area.  But such accuracy is 
not of primary concern – rather the range of heterogeneity is of greater importance in structuring 
social networks.  The translation into networks will be guided by techniques of indirect 
estimation using socioeconomic data as developed by Conley and Topa (2003).  In analyzing 
unemployment, Conley and Topa (2003) use broad spatial proximity to structure the social 
network of local interactions, with the majority occurring within and adjacent to the tract in 
question.  While this strictly spatial algorithm is highly simplified, they demonstrate that it works 
better for anticipating shifts in unemployment than an aggregate black box approach would.  In 
addition to the spatial considerations of social network structure, we incorporate social 
connections also based upon socioeconomic status.  The specific algorithms for such connections 
may be varied for scenario analysis, along with migration parameters and their effect on social 
network structure. 
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Closing Comments 

The goal of this research is not to produce one defining model but rather to provide an 
integrative simulation tool for considering alternative assumptions and theories about how social 
networks relate to neighborhood choice.  The importance of virtual experimentation with 
computer simulation models is central to the research design.  Figure 4 highlights the role that 
such experimentation plays in influencing researchers’ own mental maps of the problem at hand.  
The model described herein is the first of several that will be constructed and tested for insight.  
It is through the process of iteration in model design that we learn about the question at hand.  
Virtual experimentation enables studies of human behavior to be tested in ways that are not 
feasible or ethical in real communities.  As a corollary, virtual experimentation offers a range of 
simulated realities that may or may not emerge in the “real world.”  In Figure 4, this learning 
from virtual experiments is illustrated as embedded within learning from the real world. 

 
Figure 4.  Learning from Virtual Experiments. 

This diagram illustrates how the process of computer modeling as virtual experimentation is 
embedded in the “real world.”  Observations of this perceived reality help to shape our mental 
maps, in turn affecting the decision rules by which we operate, thereby influencing decisions 
themselves that feed back to actions in our reality.  With virtual experimentation, observations and 
decision rules may be input as data and assumptions into our models, and our output may inform 
policies for making decisions.  But the most critical aspect of virtual experimentation is learning 
from the reflexive relationship between such experimentation and our own mental maps.  Adapted 
from Sterman (2000:88). 

 
Whether through statistical measures or direct experience, real world observations shape 

the design of virtual experiments and our own mental maps that interpret them.  This research 
involves not only the development of abstract models, but also the inclusion of primary and 
secondary data for the case community of Danville, Illinois.  In the context of virtual 
experimentation (Figure 4), such real world observations will serve to guide model development 
not only through parameterization, but also through researchers’ own mental maps. 
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