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Abstract 
 

    System dynamics is still evolving.  This paper argues additional rigour is needed if system 
dynamics is to achieve its full potential in helping us understand complex behaviour of human 
activity systems.  It argues that a detailed appreciation of how systems engineers define, 
analyse, specify, manufacture, operate and support complex systems could inform the 
evolution of system dynamics even though there are significant differences between the two 
disciplines. The proffered approach integrates systems thinking, system dynamics modelling 
and systems engineering. This integrated approach enables group model building and building 
of exceedingly complex models through top-down design and careful management of the 
complexity introduced at each stage of the model-building process.  The approach promises to 
engender greater confidence that models developed using it work and are both necessary and 
sufficient representations of the real world.  The greatest potential gain accruing from 
application of this methodology is enhanced acceptance of system dynamics. 

 

1. SYSTEMS ENGINEERING AND SYSTEM DYNAMICS MODELLING 

    In just over 40 years, system dynamics modelling has developed into a well-established 
body of knowledge. However, systems thinkers and system dynamics modellers are 
continually challenged to design and deliver highly effective strategies to remediate complex 
problems. How we go about building effective, verified and validated models of complex 
world behaviour tests our cognitive capacities to the limit. This paper suggests how we might 
exploit lessons and methodologies drawn from systems engineering practice to improve the 
effectiveness of system dynamics modelling, in particular by providing a framework within 
which we manage the complexity associated with modelling real-world behaviour. 

1.1. A Common Interest in Understanding Complex Systems 

    The inescapable similarity between systems engineering and system dynamics modelling is 
that they both exist to help us understand complex systems. In systems engineering we use this 
understanding to define, analyse, specify, manufacture, operate and support systems whilst in 



system dynamics modelling we set out to build models that assist us to manage within complex 
systems and to manage complex systemic problems. System dynamics modelling focuses on 
understanding complex systems and how they behave over time, using a single main technique 
of time-domain modelling and simulation supported by general systems theory and an 
appreciation of feedback structures. 

1.2. Common Origins 

    Systems engineering (Faulconbridge and Ryan, 2003) methodologies and practices began 
to emerge from experience gained in the U.S. Department of Defense acquisition programs of 
the 1950s. These programs often involved complex and challenging user requirements that 
tended to be incomplete and poorly defined. Additionally, most programs entailed high 
technical risk because they involved large numbers of different technical disciplines and the 
use of emerging technology. Following a number of program failures, the discipline of systems 
engineering emerged to help avoid, or at least mitigate, some of the technical risks associated 
with the complex equipment acquisition programs. Systems engineering provides the 
framework within which complex systems can be adequately defined, analysed, specified, 
manufactured, operated and supported. Systems engineering processes and methodologies have 
continued to develop since the 1950s, and are widely applied to many of today’s complex and 
challenging acquisition projects. 

    Within system dynamics modelling, feedback theory and cybernetics have strong links to 
engineering. The feedback theory of system dynamics modelling is profoundly important, 
having been drawn from engineering control theory (Richardson, 1990). Similarly, cybernetics, 
defined as the science of control and communication, in the animal and the machine (Wiener, 
1948; Ashby, 1956) takes specific principles from engineering (feedback, stability, control, 
transmission and communication) and combines them with broader theories (requisite variety, 
bio-regulation and self-regulatory mechanisms) and uses them to formulate theories which we 
might apply to the general design of management and control in organisations.  

    Yet, whilst the feedback and cybernetic threads of systems thinking and system dynamics 
modelling contains abstractions drawn from engineering principles, system dynamics 
modelling is not commonly considered to be strongly related to systems engineering. 

1.3. A Divergence in Focus 

    Despite their common origins, therefore, the disciplines of systems engineering and system 
dynamics modelling have diverged over the past forty years, for a number of reasons. In 
particular, systems engineering is seen to be applicable to technical systems involving hard 
variables, while system dynamics modelling is seen to be applicable to socio-technical systems 
involving soft variables. 

    A hard variable is one, which has attributes and relationships with other variables in a 
problem space to which physical laws apply. In the case of hard variables the governing 
business rules are readily formulated using numerical values and algebraic operators because 
these rules embody physical laws. Hard variables are readily quantifiable, and quantification 
can be verified. Soft variables are a class of variables, which includes a sub-class known as 
intangibles. Soft variables assist us in describing the complexity of human affairs in the 
context of human activity systems. In problem situations where soft variables apply, the 
governing business rules are not so readily formulated or formulated in a way which is faithful 
to real-world cause-and-effect they are intended to represent. They are not readily quantified. 



Verification and validation of models involving soft variables are significantly more 
demanding than when models include only hard variables.  

    Because of its application to engineering problems, systems engineering tends to focus on 
engineering problems that are defined in terms of hard variables and solved with solid 
components, whether in hardware or software. On the other hand, system dynamics modelling 
tends to be applied to problems arising in social, socio-economic, and socio-technical systems, 
or biological, environmental or other systems involving people (or with which humans 
interact). Because of the integral role of human actors or interactions that humans have with 
parts of systems (such as environmental systems) most are considered to be purposeful human 
activity systems defined by soft variables (usually in combination with selected hard 
variables). Because the problems we address using system dynamics modelling are largely 
influenced by people, their mental models, their beliefs and values we are left to deal with the 
influences of soft variables much more so than systems engineers do. 

    It is very tempting therefore to consider systems engineering and system dynamics 
modelling to be applicable in different problem spaces. Before proceeding, we need to make a 
distinction between system dynamics modelling and systems thinking (or soft systems 
methodologies). 

    Wolstenholme (1990: 3) defines system dynamics modelling as: 

A rigorous method for qualitative description, exploration and analysis of 
complex systems in terms of their processes, information, organisational 
boundaries, and strategies; which facilitates quantitative simulation modelling 
and analysis for the design of system structure and control. 

    Checkland (1993: 318) defines systems thinking as: 

An epistemology which, when applied to human activity is based on four basic 
ideas: emergence, hierarchy, communication and control as characteristics of 
systems.  When applied to natural or designed systems the crucial characteristic 
is the emergent properties of the whole. 

    Significantly, the system dynamics modelling definition has two major elements, the 
‘softer’ method of qualitative system dynamics modelling (alternatively known as systems 
thinking or soft systems methodologies, designed to reveal the details of mental models held 
by stakeholders in a given problem), which informs the ‘harder’ form of quantitative system 
dynamics modelling. We are bound to include soft variables in combination with hard 
variables in system dynamics models because they are important.  The only thing we can say 
with certainty about models of real-world problems involving human activity systems that do 
not include the effects (influences) of soft variables is that they will be wrong (Forrester, 1961: 
57; Sterman, 2002: 523). 

    Sterman (2000: 37) argues that our mental models are dynamically deficient, that is, they 
omit feedbacks and time delays [and the consequences of system response], accumulations and 
non-linearities with the consequence that simulation is the only practical way of testing our 
mental models, noting that the complexity of [both the real world and] our mental models 
vastly exceeds our capacity to understand their implications. To build simulations we must 
construct system dynamics models built upon algebraic relationships and mathematical 
integrations. Therefore, even though a system dynamics model may include consideration of 
the influences of (or effects produced by) soft variables, it must ultimately become a hard 



(quantitative) representation of a particular problem expressed in precise mathematical way.    

    Simulation performance of our models must be shown to be reliable, repeatable, and 
produce behaviours traceable back to real-world cause-and-effect. If the client has visibility of, 
or is involved in, the processes of building and testing models this can build shared 
understanding and confidence.  When making the transition from conceptual systems thinking 
(soft systems) models to quantified system dynamics models we might be tempted to interpret 
the quantified model as the most plausible representation of the problem at hand. However, 
without a sound model-building framework that includes comprehensive testing, we cannot 
have confidence in the veracity of the transition from conceptual to quantified model or the 
quantified model itself. 

    Consequently, while systems engineering and the qualitative aspects of systems dynamics 
may be considered to occupy different parts of the problem space, systems engineering has 
much to offer in aiding us to design, build and test quantitative system dynamics models 
including the detailed transition from conceptual representation to quantified model. In the 
sections that follow it is argued that the most important gain to be made is in the area of 
confidence that quantified models we build will function as intended, and that testing verify 
and validate the model is both routine and comprehensively applied through systems 
engineering methodology. 

2. SYSTEMS ENGINEERING METHODOLOGY TO ENHANCE SYSTEMS 
DYNAMICS MODELLING 

    There is a wide range of systems engineering definitions, each of which tends to reflect the 
particular focus of its source (Faulconbridge and Ryan, 2003; DSMC, 1990; EIA/IS 632, 1994; 
IEEE-STD-1220-1994, 1995; Sage and Rouse, 1999). Perhaps the most useful is: “…an 
interdisciplinary, comprehensive approach to solving complex system problems and satisfying 
stakeholder requirements” (SECMM-95-01, 1995). Although each of these definitions has a 
slightly different focus, a number of common themes are evident and are described in the 
following sections. Of particular interest to us here are the themes of requirements engineering, 
a top-down approach to managing and coping with complexity, verification and validation, and 
a mechanism for integrating many disciplines and specialisations. 

2.1. Requirements Engineering 

    The complete and accurate definition of system requirements is the primary focus early in 
any systems engineering effort. The lifecycle of a systems design begins with a simple 
statement of need, which is translated into a large number of statements of requirement that 
form the basis for the functional design and subsequently the physical architecture. These 
transitions must be managed by a rigorous process that guarantees all relevant requirements are 
included (and all irrelevant requirements excluded). The establishment of a set of correct 
requirements is fundamental to the success of the subsequent design activities.  

    Once requirements have been collected, the systems engineering process then focuses on 
the management of these requirements from the system level right down to the lowest 
constituent component. This requirements engineering (sometimes referred to as requirements 
management or requirements flowdown) involves elicitation, analysis, definition and validation 
of system requirements. Requirements engineering ensures that a rigorous approach is taken to 
the collection of a complete set of unambiguous requirements from the stakeholders.  



    Requirements traceability is also an essential element of effective management of complex 
projects. Through traceability, design decisions can be traced from any given system-level 
requirement down to a detailed design decision (forward traceability). Similarly, any 
individual design decision must be able to be justified by being associated with at least one 
higher-level requirement (backwards traceability). This traceability is important since the 
customer must be assured that all requirements can be traced forward and can be accounted for 
in the design at any stage. Further, any aspect of the design that cannot be traced back to a 
higher-level requirement is likely to represent unnecessary work for which the customer is 
most probably paying a premium. Traceability also supports the change process, especially the 
investigation of the impact an intended change might have. 

    Support for requirements traceability is a feature of the top-down approach, one which is a 
consequence of taking a holistic view, that is, the unquestioned world view, weltanschauung, 
to which Checkland (1981) and Checkland and Scholes (1999) refer. This top-down approach 
provides a mechanism by which it can be guaranteed that requirements can be satisfied at any 
stage. A bottom-up approach cannot provide the same guarantee, nor does it enable the 
systematic discovery of emergent properties. 

2.2. A Top-down Approach to Coping with Complexity 

    Traditional engineering design methods are based on a bottom-up approach in which 
known components are assembled into subsystems from which the system is constructed. The 
system is then tested for the desired properties and the design is modified in an iterative 
manner until the system meets the desired criteria. This approach is valid and extremely useful 
for relatively straightforward problems that are well defined. Unfortunately, complex problems 
cannot be solved with the bottom-up approach.  

    Systems engineering begins by addressing the complex system as a whole, which facilitates 
the initial allocation of requirements as well as the subsequent analysis of the system and its 
interfaces. Once system-level requirements are understood, the system is then broken down 
into subsystems and the subsystems further broken down into components until a complete 
understanding is achieved of the system from top to bottom.  

    This top-down approach is a very important aspect of managing the development of 
complex systems. By viewing the system as a whole initially and then progressively breaking 
the system into smaller elements, the interaction between the components can be understood 
more thoroughly, which assists in identifying and designing the necessary interfaces between 
components (internal interfaces) and between this and other systems and the environment 
(external interfaces). For example, Figure 1 illustrates the ANSI/EIA-632 (1999) approach to 
top-down development. 
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Figure 1. ANSI/EIA-632 building block concept for top-down development. 

    It must be recognized, however, that while design is conducted top down the system is 
implemented using a bottom-up approach. That is, one major aim of system engineering can be 
considered to be to provide a rigorous, reproducible process by which the complex system can 
be broken into a series of simple components that can then be designed and developed using 
the traditional engineering bottom-up approach. Importantly, the other major aim of systems 
engineering is to provide a process by which the components and subsystems can be integrated 
(synthesised, in systems engineering terms) to achieve the desired system properties. 

    Integration aims to combine lower-level components into progressively higher-level 
subsystems until the system is complete. While the design process has been conducted top-
down, the integration process is conducted bottom-up using well-proven techniques. At each 
stage of the integration, some form of integration testing is conducted to verify the successful 
integration against the appropriate level of documentation. Eventually, when systems 
integration is complete, testing can be conducted at the system level against the original 
requirements. Test and evaluation plays a role in all phases of the systems engineering effort. 
The integration effort is summarized in Figure 2. Note that the terms system, subsystem and 
component are relative. Each system comprises subsystems that consist of components. Each 
subsystem, however, can be considered to be a system in its own right, which has subsystems 
and components and so on. 
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Figure 2. Top-down development and bottom-up integration process. 

2.3. System Optimisation and Balance 

    During system design, it is important to remember that system performance is of vital 
importance rather than the performance of the individual subsystems and components 
(Faulconbridge and Ryan, 2003). It does not necessarily follow that the combination of 
optimised subsystems leads to an optimised system. Additionally, the system architecture must 
represent a balance between the large number of requirements that, as well as technical 
considerations, cover a wide range of factors such as environmental, ergonomic human factors, 
moral, ethical, social, cultural, psychological, and so on. This system optimization and balance 
(treatment at the most appropriate and consistently applied level of aggregation) can only be 
guaranteed using a top-down approach. 

2.4. Integration of Disciplines and Specialisations 

    Systems engineering aims to manage and integrate the efforts of a multitude of technical 
disciplines and specialisations to ensure that all user requirements are adequately addressed. 
Rarely is it possible for a complex system to be designed by a single discipline or by selected 
individuals working alone. Consider an aircraft example. While aeronautical engineers may be 
considered to have a major role, the design, development and production of a modern aircraft 
system requires a wide variety of other engineering disciplines including electrical, electronics, 
communications, radar, metallurgical, and corrosion engineers. Of course, in system terms, 
other engineering disciplines are required for testing and for logistics and maintenance support 
as well as the design and building of facilities such as runways, hangars, refuelling facilities, 
embarkation/disembarkation facilities, and so on. Other non-engineering disciplines are 
involved in project management, marketing, finance, accounting, legal, environmental, and so 
on. In short, there could be hundreds, even thousands, of engineers and members of other 
disciplines involved in the delivery of an aircraft system.  

    The aim of the systems engineering function is to break up the task into elements that can 
be developed by these disparate disciplines and specialisations and then provide the 
management to integrate their efforts to produce a system that meets the users requirements. In 
modern system developments, this function is all the more important because of the complexity 
of large projects, their contracting arrangements and the geographic dispersion of contractor 
and subcontractor personnel across the country and around the world. 

3. A MORE-RIGOROUS APPROACH TO SYSTEM DYNAMICS MODELLING 

    Systems engineering, therefore, has much to offer system dynamics modelling. In 
particular, systems engineering offers a framework through which design and development 
discipline is applied and rigour assures reliable outcomes. System dynamics models bring 
together hard and soft aspects that are difficult to evaluate and test (verify) in detail, but to 
assure the necessary rigour and opportunities to learn, comprehensive testing is essential. 



Arguably, the challenges faced by system dynamicists in verifying their models (that they work 
‘right’ in accordance with requirements) are greater because of the influence of soft variables 
and the variability of human behaviour in human activity systems and human response to 
changes (changes applied through exogenous forces or those which develop within the human 
activity system). This places greater demands on the modeller to be able to design and apply 
tests that verify that the models actually reproduce the cause-and-effect relationships of the 
real-world problem situation. System dynamics models must explain real-world behaviour 
through structure and equations that reflect real causal relationships as they appear in the real 
world system (Forrester, 1961: 115-129). These models must be tested to assure that they are 
the ‘right’ models (validated) to provide the detailed insights needed for the design and 
development of appropriate remedial strategies. So, discipline and rigour in system dynamics 
modelling is essential. 

3.1. Requirements Engineering 

    There is considerable evidence that, from the viewpoint of cognitive capacity, we are 
poorly equipped to deal with complex problems (Diehl and Sterman, 1995; Dörner, 1980; 
Forrester, 1971; Kleinmuntz, 1985; 1993; Mosekilde and Larson, 1988; Mosekilde, et, al., 
1990; Paich and Sterman, 1993; Sterman, 1989a; 1989b; 1989c; 1994; 2000; 2002 and 
Sweeney and Sterman, 2000). Where we might encounter large amounts of detail (detail 
complexity), we need tools and techniques to manage that detail. Tools such as databases and 
spreadsheets are widely used and we are generally familiar with these. It is a different story, 
however, when it comes to problems where we might encounter the additional aspect of 
dynamic complexity. That is, dynamic complexity in problems is characterised by time 
dependence, tightly coupled elements, feedback, non-linearity, history dependence, 
adaptability, counter-intuitive system response, policy resistance and trade-offs between short 
run and long-run remediation (Sterman, 2000: 22). We need specialised tools and techniques to 
help us build models, which create for us the best possible opportunities to understand these 
complex, dynamic problems. Again, rigour in model building supported by both verification 
and validation is essential. Systems engineering enforces that rigour through requirements 
engineering and requirements management and formal recognition of verification and 
validation within the systems engineering methodology. 

    System dynamics modelling supported by the tools and techniques of the systems 
engineering discipline offers to improve the effectiveness of our problem-solving approach.  
Noting that system dynamics modelling can be iterative (Forrester, 1975: 245; Homer, 1996) 
the proffered approach creates opportunities to reduce the number of iterations needed to build 
truly viable models, whilst enhancing particular opportunities to learn because modelling 
activities will be highly visible, comprehensively documented and explained.  

    It is acknowledged that focusing on model building (rather than on producing the model as 
an artefact) can be highly valuable in generating learning (Richardson and Pugh, 1981; 
Forrester, 1985; Morecroft, 1992; Morecroft and Sterman, 1992; Morecroft and Sterman, 1994; 
Homer, 1996; Sterman, 2000). It is also acknowledged that a model-building strategy having as 
its primarily goal the development of a working model might actually preclude certain 
opportunities along the way to experiment and learn ab initio about system dynamics structure 
and causality.  

    Clearly, there is a conflict here. This conflict could be resolved by reflecting on the main 
purpose of each particular model-building project. If the primary purpose is to maximise 
learning (by experimentation and progressive development and testing of dynamic hypotheses) 



and ample time is available for this to occur, then a highly iterative model-building process 
would be in order. If the primary purpose is to produce modelling outputs through an efficient 
set of processes having learning as a secondary (but very important) purpose then an approach 
such as that described here, integrating systems engineering and system dynamics modelling 
approach, would be more appropriate. 

    Integrating the systems engineering approach into a methodology for building of system 
dynamics models for analysis of complex problems provides a number of benefits. The 
proffered approach integrates: 

• Requirements Analysis. The complete and accurate definition of the systemic 
problem, demands primary focus on clear and unambiguous statements of 
requirements for a model of that systemic problem. Defining requirements forms 
the basis for the structural and physical designs of models, which will be used for 
analysis of the specific parts of a physical system or human activity system under 
study. The initially unstructured problem situation is translated through to precise 
definitions of the human activity system and its behaviour. These definitions are 
critical for many reasons including being the basis for model design, development 
and verification, that is, the detailed testing against requirements. To facilitate this 
analysis we might use Soft Systems Methodology (Checkland, 1981) to develop a 
series of root definitions of the relevant parts of the human activity system. A root 
definition is a concise, tightly constructed definition of a human activity system 
which states what the system is; what it does is then elaborated in a conceptual 
model that is built on the basis of the definition. Every element in the definition 
must be reflected in the model derived from it. A well-formulated root definition 
will make explicit each of the Customer, Actor, Transformation, Weltanschauung, 
Owner, and Environmental constraints (CATWOE) elements identified by 
Checkland (1981) and Checkland and Scholes (1999). Building root definitions of 
human activity systems raises the level of consideration of the problem to the 
system level (initially, at least).  The advantage of such a system-level consideration 
is that it enhances top-down thinking (consistent with the systems engineering 
approach).  This contrasts strongly with those system dynamics practices in which 
casual loop diagramming only informs bottom-up model building.  

• Requirements Management. Once requirements have been collected, the systems 
engineering process then focuses on the management of those requirements from 
the highest level of aggregation right down to the lowest. It is appropriate to define 
requirements in terms of a model at the highest level, a sector at the intermediate 
level and a module at the lowest level. Modules contain elements such as stocks 
(levels or accumulators), rates (flows), auxiliary variables, physical flows and 
information links (the latter two often forming feedback loops). To collect and build 
specifications of modelling requirements involves activities of elicitation, analysis, 
definition and validation. Requirements engineering ensures that a rigorous 
approach is taken to the collection of a complete set of unambiguous requirements 
from the stakeholders in each of their perspectives (even though at some stage these 
will be combined into a single view represented by the model, or set of connected 
models). 

• Requirements Traceability. Through being able to trace requirements back to 
stakeholders and through every stage of consideration of a complex problem, it is 



possible to assure that all requirements can be traced forward and can be accounted 
for in the design of the model at any stage of its development. Similarly, any 
individual design decision affecting the model of the system, or the system itself, 
must be able to be justified by being associated with at least one higher-level 
requirement (backward traceability). Further, any aspect of the model being used to 
analyse the design, and the design itself, that cannot be traced back to a higher-level 
requirement is likely to result in redundant or unnecessary work. Traceability also 
supports processes that lead to implementation of changes to the structure of the 
systemic problem under examination. Support for requirements traceability is a 
feature of the top-down systems engineering approach that provides a mechanism 
by which it can be guaranteed that requirements can be satisfied at any stage. A 
bottom-up approach cannot provide the same guarantee. 

    Any model-building activity must be managed as a project designed to deliver specific 
outcomes. These outcomes include learning through experimentation with the model and 
delivery of a completed model. The project must be based on requirements: 

• elicited with close engagement of key stakeholders, notably the client group for 
whom the model is being built; 

• analysed for logical construction and completeness—here conflicts between 
requirements must be resolved whilst maintaining a minimum set of requirements 
which must be met (built into the model) according to priority; 

• defined, that is, clearly and unambiguously specified using precise language; 

• validated, that is, tested to determine the extent to which the requirements are likely 
to lead to development of a model which maps sufficiently onto the real-world 
problem space; 

• managed throughout—here the modelling project must be managed in terms of its: 

∗ scope, particularly as the meanings of modelling requirements 
(interpretations of dynamic hypotheses) are questioned, which often leads to 
pressure to change the scope of the modelling effort ; and 

∗ configuration, that is, what form the model will take and what it will include 
or exclude must be constantly monitored through a set of formal processes, 
especially where the allocation of effort to tasks involves potential overlap 
and confusion; 

• traceable through each step, including: 

∗ back to the original requirements (and testable, that is, verifiable against the 
original requirements); and 

∗ any changes that may have been permitted through configuration 
management. 

    The system dynamics modelling process is illustrated in Figure 3 (adapted from Forrester, 
1994: 245), annotated to show where systems thinking and soft systems methodology and 



systems engineering activities are integrated.  
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Figure 3. System dynamics modelling process annotated with Soft Systems Methodology, Systems Thinking 
and Systems Engineering activities. 

3.2. A Top-down Approach to Coping with Complexity 

3.2.1. Managing Complexity 

    Systems engineering begins by addressing the complex system as a whole, which facilitates 
the initial allocation of requirements as well as the subsequent analysis of the system and its 
interfaces. Once system-level requirements are understood, the system is then broken down 
into subsystems and the subsystems further broken down into components until a complete 
understanding is achieved of the system from top to bottom. This top-down approach is a very 
important element of managing the development of complex systems. The approach leads to 
clear definition of the component parts (modules), sectors and co-models and the interfaces 
between them (McLucas and Ryan, 2005). A generic diagrammatic representation of a module 
is the lowest-level component part, is shown in Figure 4 (McLucas, 2005). 
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.  conversion factors
.  units of measurement

Physical Outflow
Definition to include:
.  flow type:

discrete, or
continuous

.  flow direction

.  maximum flow rate

.  dt

.  simulation timestep

.  simulation time horizon

.  units

.  dimensions

 

Figure 4. Generic system dynamics modelling module. 

This approach results in creation of starting definitions of each module for a specific problem, 
such as that (by way of example only) explained by Sterman (2000: 285-289) as shown in 
Figure 5. This example considers how multiple feedback mechanisms, some including non-
linearities (though that is generally not known at this early stage), can produce complex 
behaviour in populations where the environment has limited capacity to carry a population. 



     

Figure 5. Module Formulation of Population Problem. 

    From a process point of view, requirements and design are approached top-down (with 
Figure 5 being an early artefact of the process) but detailed construction follows a bottom-up 
approach (once each functional module has been described, such as shown in Figure 4). Note 
that in the process, Figure 5 would be developed before Figure 4.  

    The subsequent building of each module, verification and their combining (through 
integration and synthesis) must be managed through systems engineering methodology, which 
has the rigour and discipline to assure that none of the system’s functionality is lost and 
emergent properties are systematically discovered. The systems engineering approach also 
assures that processes of analysis, design and construction can be reproduced and can be 
implemented in a way that still enables use of the traditional bottom-up approach. It also 
enables the allocation of modelling effort to building, testing and subsequent synthesis in a 
way that avoids duplication of effort, misnaming of variables occurring at the interfaces 
between modules. Consequently, once functional requirements and modules have been 
defined, group model building becomes a routine matter. 

    Top-down analysis creates the framework within which bottom-up construction of modules 
and sectors and ultimately integration into models can then occur. This approach is facilitated 
by formulation of a clearly defined systemic structure which will lead to creation of models 
exhibiting the necessary system-level behaviour, that is, models which replicate the reference 
modes of behaviour (in systems engineering terms, delivers required functionality). 

    Graham (1977) noted that experienced system dynamicists perceive that situations that 
appear to be very different on the surface are caused by fundamentally similar mechanisms. 
This is the structure referred to by Forrester (1961: 2) and explained by Goodman (1989) and 
various teachers through to Sterman (2000). Many of the fundamental structural elements have 
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been defined by Hines et al. (1996; 1997; 2000), Coyle (1996) and McLucas (2005). However, 
structure involves more than archetypical behaviour and defined molecules of system dynamics 
structure or common modules. It also encompasses the combined elements (such as feedback 
mechanisms, non-linear relationships and shifting feedback loop dominance), which produce 
complex dynamics behaviour (and, indeed, are emergent properties of such systems).  

    Explicit and directed study of these molecules and combined elements of structure are 
essential to developing in the student requisite skills in conceptualisation and development of 
statements of requirement needed for the subsequent building and testing of models. However, 
once the conceptual structure of the required model has been developed through a set of top-
down procedures, it is essential to build the model through stepwise processes that at no time 
permits the complexity introduced to exceed our ability to understand.  This should enable us 
to build models of problems that are exceedingly complex, and in theory at least have 
unlimited complexity.  

    The systems engineering approach also facilitates management of construction of the 
model in its most-highly aggregated form by enabling the group modelling leader having the 
overall responsibility for model construction to reflect upon the known behaviour of building 
blocks of structure. Feedback loops of archetypical system dynamics structures will frequently 
exist across the boundaries of the modules defined for the group modelling activity. Whilst the 
group modelling leader will be able to seek out instances of archetypical structures, he or she 
will be able exploit these structures by coordinating their linkage across the architecture and at 
each of the defined module / sector / co-model boundaries. The systems engineering approach 
has the added advantage that it routinely enables the discovery of those feedback mechanisms 
(and the emergent properties with which they are associated) even when those building 
individual modules, say as described in Figure 5, do not know explicitly that inputs or outputs 
to the module they are currently working on are part of a feedback loop. 

    To manage complexity, therefore, we need to be able to specify the requirement for our 
model, allocate these requirements appropriately to sectors and then, within sectors, allocate 
requirements to modules. Having developed and tested the modules, we integrate them into 
sectors, test the sectors against the subset of requirements, integrate sectors into the model and 
then test against the system-level requirements. The ‘testing’ (verification and validation) is 
discussed in more detail in Section 3.2.4. 

3.2.2. Reducing Complexity 

    Managers often face socio-technical problems of order in the range 10th to 100th (Forrester, 
1975: 66). It is acknowledged that order is only one indicator of complexity. This complexity 
easily outmatches our ability to reliably use judgement and intuition. Sterman (2000: 29) 
observes that our cognitive capability is barely sufficient to enable us to mentally simulate a 
first-order linear positive feedback system. Using the Complexity Index C defined by Kline 
(1995) such a system would be defined by C ≈ 4. The problems of interest to system dynamics 
modellers, such as those identified by Forrester (1975) have complexities characterised by C 
>> 106. Kline suggests real problems we face can be characterised by values C in the range 109 
to 1013, noting that for these problems C is the product of the number of state variables, the 
number of independent parameters describing the problem and the number of feedback loops 
(endogenous feedback loops plus those which cross the boundary of the problem space, linking 
to exogenous factors). We need effective ways of reducing the complexity encountered as we 
progress through each stage of model building, even though we aim to build models of highly 
complex problems. 



    A study (McLucas and Ryan, 2005) of 30 models published in System Dynamics Review, 
since 1985 (for which full code listings were available), each held up as exemplars of system 
dynamics modelling practice, suggests that: 

• we successfully and consistently use system dynamics modelling to analyse 
problems having complexity 10–1,000 times our inherent cognitive capability, the 
complexity modelled having a mean of 100 times; and 

• these models typically contain 3–20 modules (the mean being nine), where we have 
the cognitive capability to analyse each in isolation. 

    Interestingly, without formally observing any stated systems engineering methodology, it 
appears that the experienced builders of the models sampled coped intuitively with the 
complexity of the problem being modelled by breaking the task down into modules of 
manageable complexity.  Because most of these models were built using software applications 
which demanded high levels of skill in writing code, discipline in model construction was 
essential (particularly in formulation of blocks of code for functional modules). While we 
might expect such intuition from experienced modellers, a more-formal approach is necessary 
to ensure that top-down decomposition is a mandatory element of system dynamics modelling, 
particularly when being taught to, and applied by, novice modellers.  Arguably, this is more 
important where object-oriented system dynamics software applications are commonplace and 
building fully ‘wired-up’ models is quick and easy, and potentially erroneous as a result. 

3.2.3. Emergent Properties 

    Traditional problem solving involves working from the bottom up. The bottom-up 
approach assembles well-known, well-understood and manageable components into 
subsystems. Emergent properties therefore cannot be predicted solely by looking at the 
components (Stevens, et al., 1998: 94). A bottom-up approach does not deliberately enable the 
discovery of emergent properties. In system dynamics modelling, analysing reference modes of 
behaviour as part of a top-down approach (consistent with systems engineering) systematically 
aids discovery of one particular form of emergent property.  This is complex dynamic 
behaviour produced by feedback and delay. Without this aspect of methodology, the emergent 
properties and the real causes for them being produced may remain undiscovered. 

3.2.4. Verification and Validation 

    In engineering there is a very strong link between the model and causal explanations 
underpinning the model, as evidenced by physical laws and the emphasis placed by 
Engineering Faculties on studying those physical laws. In systems engineering it is expected 
that these causal explanations can be ‘proven’. In system dynamics modelling, despite the 
warning provided by Forrester (1961: 115-129) that we must explain real-world behaviour 
through the structure and equations which reflect the real causal relationships in the real-world 
system, examples of system dynamics models which mimic the real world (but for which there 
is no real ‘proof’) can be found. Unfortunately, the consequence is poorly built models in 
which we can have little confidence (though they might be ‘sold’ to clients as affording 
powerful insights into their problems). The reasons for this are neither trivial nor does it 
necessarily suggest deliberately poor modelling practice.  

    System dynamics models frequently contain multiple (and non-linear) feedbacks which 
readily elude our human cognitive capability—where multiple feedbacks exist, we need to be 



able to develop comprehensive tests to assure that our models behave as they should. The 
problem that this presents to modellers is that, if we do not have the cognitive capability to 
understand the feedback mechanisms, how can we know that the tests we design and 
implement actually verify that our models work as they should? 

    We can improve our system dynamics modelling by use of molecules of system dynamics 
structure which we study in detail. Knowledge of these molecules and their behaviour can 
augment strategies for model testing, if we acknowledge that they can be constructed and 
tested separately then progressively combined to produce a model whose behaviour is 
compared with the model we have constructed through the top-down approach described.  

    Without systems engineering and the rigour it brings through progressive verification, we 
cannot expect to build sophisticated models of complex problems and have those models work 
properly. 

    When we combine systems thinking and system dynamics modelling with systems 
engineering concepts our focus changes to the fundamental building blocks of structure where, 
through a top-down approach, we define and build components parts (modules or building 
blocks), each designed with specific functionality in mind. We also have to pay close attention 
to management of the interfaces between the component parts we can build correctly 
functioning models. Each of these is developed for a specific purpose with specific 
representations of particular real-world problems. 

    We must also determine whether the model is a sufficient representation for our purposes. 
That is, we must test the model, ensuring as far as possible that it is correctly constructed and 
behaves correctly.  We must also test that it faithfully represents the real world (Forrester, 
1961: 115-129), but in both necessary and sufficient ways (Ashby, 1956: 202-218; McLucas, 
2005: 151-152; Williams, 2002: 43; Wittenberg, 1992: 22-23). 

    Systems engineering as it is applied to system dynamics modelling can be described as a 
sequential process of requirements creation and integration into a model following the arrows 
in Figure 4, (adapted after Forsberg, et al., 2000: 116). The ‘Vee’ model is also described in 
standard systems engineering texts (Blanchard and Fabrycky, 1998; Sage and Rouse, 1999). 
The development of the system dynamics model follows the sequence from the top left of the 
‘Vee’, to the bottom, then back up to the top right.  



    

 
Understand
stakeholder

requirements.
Develop Model
Validation Plan

Develop Model
Specification.

Develop Model
Verification Plan

Expand Model
Specification to Create
Sector Specification.

Develop Sector
Verification Plan

Expand Sector
Specification to Create
Module Specification.

Develop Module
Verification Plan

Code Module to
“Build-to”

Documentation

Demonstrate and
Validate Model to
Validation Plan

Integrate Model and
Perform Model

Verification to Model
Verification Plan

Assemble Model
Sectors and Perform

Verification to
Specifications and

Sector Verification Plan

Test Module to “Build
to” Documentation

and Verification Plan

In
te

gr
ati

on
 a

nd
 V

er
ific

at
io

n
Decom

position and Definition

 

Figure 4. The basic systems engineering ‘Vee’ model applied to system dynamics model building. 

    Two essential model-building activities are verification and validation. Unfortunately these 
two terms are often used interchangeably, which leads to confusion. Verification and validation 
involve two distinctly different types of activities but which are inseparable when it comes to 
system dynamics modelling. 

    For our purposes, verification can be defined as (Jones, 1996: 94-96; Rakitin, 1997: 51-66): 

The process of determining whether or not the products of a given phase of 
the system dynamics modelling development cycle fulfil the requirements 
established during the previous phase. 

    Another way to view verification activities is that verification helps us answer the question: 
“Are we building the model right?’   

    In system dynamics modelling, verification is all about ensuring that the governing 
business rules have been correctly coded, that the structure in which those rules operate results 
in correct replication of the reference modes of behaviour identified in an earlier stage (and 
specified as requirements for the model we are building). 

    In essence, IEEE (1983) explains that validation is the process of evaluating models at the 
end of the model building-process to ensure that they comply with model requirements (from 
the client’s perspective). When we validate a model we seek to answer the question: “have we 
built the right model?” 

3.2.4.1. Verification—Considerations for Design of Testing 

    Verification involves designing and applying a sufficiently exhaustive set of tests that 



measure how individual modules or complete models behave. This behaviour is compared with 
the modes of behaviour we have specified for individual modules or complete models.  

    Modules are designed to perform functions that are critical to the operation of the model as 
a whole. The tests we design and apply will establish the extent to which this is so.  

    Models must sufficiently and faithfully incorporate the governing business rules to produce 
behaviour over time that is representative of the reference modes defined a preceding stage. 
Again, the tests we design and apply will establish the extent to which this is so, including: 

• logical tests to assure verification of parameters, integrity of dimensions of units, 
correct sequence of calculation, and correct form of output; 

• extreme-value tests to assure stability under exposure to extreme conditions and 
extreme policies; and 

• mass-balance tests to assure that physical flows do not violate the basic requirement 
for physical flows into a module, sector or model either accumulate or flow out. 

3.2.4.2. Validation—Considerations for the Design of Testing 

    When we validate system dynamics models we seek to determine the extent to which two 
criteria are satisfied (Forrester, 1961: 115-129), the model must: 

• generate behaviour that does not differ significantly from the real system, and 

• explain real world behaviour through the structure and equations which reflect the 
real causal relationships in the real-world system. 

    The importance of the second criterion is that any number of models can be constructed to 
mimic the real world—that is, they can reproduce a given set of behaviours without faithfully 
representing real-world causal structures (cause-and-effect relationships). 

    This leads us to focus our validation activities for real-world problems on two types of test 
(McLucas, 2005): 

• structural tests to assure boundary accuracy and structural accuracy; and 

• behavioural tests to assure reproduction of behaviour, plausible behaviour 
prediction, identification of behavioural sensitivity, and identification of 
behavioural anomalies. 

    Validation testing, therefore, aims to identify cause-and-effect mechanisms and determine 
the extent to which the way we have represented them in our models is a sufficiently faithful 
representation of the real world to meet our needs. We must remain mindful of the fact that we 
cannot establish truth through system dynamics modelling (Sterman, 2000: 846). The best we 
can achieve is confidence that our models are necessary and sufficient representations of real-
world cause-and-effect structures. 

3.3. System Optimization and Balance 

    It should be noted that, as in engineering, the basic functions of system dynamics 



modelling are taught and conducted bottom-up. That is, we take the basic structures and join 
them together to produce modules and thence sectors (subsystems) and models (systems). In 
engineering, therefore, there is a continual struggle during design to stay at an appropriate level 
of abstraction, or its inverse, aggregation, (principally by using the top-down approach) to 
ensure that requirements and complexity are appropriately managed. 

    The top-down approach has the additional benefit of contributing to system optimization 
and balance. That is, by using a higher-level methodology such as Soft Systems Modelling 
(SSM) before focusing on lower-level tools such as causal loop diagrams or influence 
diagrams, we can ensure that we stay focused on the problem in context and therefore achieve 
and maintain system-level optimization before dropping down to the detailed modelling tools 
(causal loop and influence diagrams) to apply rigour to the working elements of the model. 

4. CONCLUSION 

Systems engineering and system dynamics modelling have a common heritage. While they 
have diverged somewhat over the last 40 years, systems engineering has much to offer system 
dynamics modelling, particularly in terms of the discipline and rigour associated with 
requirements engineering, a top-down approach to managing and coping with complexity, 
validation and verification, and providing a mechanism for integrating a number of disciplines 
and specializations when engaging in group model building activities.  Models built using the 
proffered methodology should enable model building with deliberate and careful management 
of the complexity introduced at each stage of the model building process.  This should 
engender greater confidence that system dynamics models we build address clearly specified 
problems and that those models work correctly.  As a consequence system dynamics modelling 
will be strengthened.  The greatest potential gain accruing from application of additional rigour 
consistent with systems engineering practice will be improved acceptance of system dynamics 
modelling as a discipline, which would be of enormous benefit. 
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