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 Service systems are inherently complex, both in their detail and dynamics.  System 
dynamics offers great potential to help policy makers, administrators, and researchers 
make better decisions about service system changes.  However, efforts have been 
constrained by not being able to construct numerical reference modes without 
making strong assumptions about the structure of the case flows.  This paper presents 
a novel approach to generating numerical reference modes from administrative data-
bases that is based on computation theory.  The method is validated with simulated 
datasets, and its feasibility and substantive significance demonstrated in an analysis 
of a merged child welfare database containing 10,250 children and adolescents. 

METHODABSTRACT

PROBLEM

 The main inspiration behind this ap-
proach comes from computation theory 
(e.g., Lewis and Papadimitriou, 1981) in 
seeing the way that people move through 
service systems as a finite state machine 
where the events are letters in an alphabet, 
the states are words over the alphabet, and 
the pathways are strings of words or sen-
tences.  The solution involves specifying a 
machine that operates on strings using 
regular expressions.   
 The procedure is illustrated in Figures 4 
through 5 for the first individual in the data 
matrix (see Figure 2).  The user describes a 
machine specific to the data set in terms of 
a state table (Figure 3a) and event table 
(Figure 3b).  The state table maps variables 

 The major benefit of this approach is that it facilitates the exploration and reduction of the stock and flow struc-
ture of a service network that has high detail complexity.  It can be implemented in a variety of programming lan-
guages and is relatively efficient, and thus practical to use on large data sets.  Corresponding numerical reference 
modes and estimates can automatically be extracted from the reduced network, and recalculated as one gains a 
deeper understanding of the system. 
 Next steps include (1) analyzing the child welfare network with respect to a variety of outcomes, and identifying 
the major pathways and feedback loops contributing to those outcomes, and (2) comparing service pathways by de-
mographics and risk groups.  Working with stakeholders and other researchers, these results will then be used as the 
basis for a system dynamics model of a dynamic problem in the child welfare service system. 
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Figure 2:  Individual i=1 passing through four service 
systems across 10 points in time
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Figure 1:  Data matrix with 6 sets of indicators of 
events and services for 7 individuals f : 
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Figure 4: Generating a list of events from indicators in the data matrix

 Administrative databases will contain a variety of information including demo-
graphic variables and variables with dates of key events such as the opening or closing 
of cases.  The data may live in a flat database, relational database, or distributed over a 
variety of unconnected databases.  However, most statistical analyses require a matrix 
or flat database as an input.  Thus one will typically construct a single table from mul-
tiple tables with each row corresponding to a case and each column representing a 
variable.  In order to capture multiple service dates, one usually creates a series of indi-
cators or date variables for each type of service (for example, see Figure 1).  
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Figure 6:  Graph of network flows

CONCLUSIONS AND NEXT STEPS

LIMITATION

RESULTS

 Such data are likely to have individuals with co-occurring events and overlapping 
periods of services (see Figure 2).  This presents a problem when there a large number 
of cases, many types of services and events, and thus uncertainty about the stock and 
flow structure of a service system.   If, however, one had an unbiased algorithm for lim-
iting the number of combinations to a manageable level of detail complexity, then 
one could build on existing graph or network analysis tools for interactively identify-
ing, exploring, interpreting, and simplifying the major stocks and conserved flows in a 
service system.  
 The problem is then to find and specify an algorithm for mapping each row in the 
data matrix D into a list T of transitions and states such that, T (a) reflects the structure 
of individuals’ pathways through service systems where there are co-occurring events 
and overlapping periods of service, and (b) is isomorphic with a stock-and-flow de-
scription of service pathways. 

 The output is a list of states, tran-
sitions, and times that can be used 
for a wide range of analyses includ-
ing the graph and network analysis, 
calculation of transition matrices, 
numerical reference modes, and es-
timation of delays.  Figure 6 is a 
graph of the network generated 
from the data shown in Figure 1 and 
isomorphic with a stock and flow 
diagram of the pathways through a 
service system.  
 The circles represent states or 
stocks, while the arcs represent case 
flows with the arrow pointing in the 
direction of the flow.  Solid lines indi-
cate where two or more individuals 
passed through a flow, while dashed 
lines indicate that only one person 
passed through the flow. 
 The procedure is practical for 
relatively large merged administra-
tive databases.  A merged database 
with 10,250 individuals and 27 types 
of states and events over nearly 200 
indicator variables required two 
hours to process on a Dell Pentium 4 
with 512 MB of RAM.  The computa-
tion time required is linear, and pro-
cessing can easily be distributed 
over several computers and run in-
crementally as additional data 
become available

 Imputing transition events intro-
duces an uncertainty in some states.  
For example, in Figure 7, imputing 
the transition at ta will result in a 
transition from {a}{c} into {c}, while 
imputing the transition at tb will 
result in a transition from {a} into 
{unk_a}.  This could lead to descrip-
tions of the service network and ref-
erence modes that are sensitive to 
assumptions about the delay be-
tween {a} and the imputed event.  
This is an inherent limitation of 
trying to map a hybrid representa-
tion of a system into a continuous 
representation.    

Figure 3: Description of machine

Name Regexp Description
{a} a. Service 1
{b} bs. Service 2, start
{be} be. Service 2, end
{c} cs. Service 3, start
{ce} ce. Service 3, end
{d} d. Service 4

Event Lregexp Rregexp Description
[{]a[}] [{]a[}] Service 1 event
([{]b[}]).*([{]be[}]) ([{]b[}]) ([{]be[}]) Service 2 interval
([{]c[}]).*([{]ce[}]) ([{]c[}]) ([{]ce[}]) Service 3 interval
[{]d[}] [{]d[}] Service 4 event

(a) State table

(b) Event table

Figure 7:  Imputation of unknown states and 
times and 
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Figure 5:  Generating a list of states and transitions from a list of events
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7. The machine reads each line of input from and adds that 
to the last machine state, , to generate a description of the 
individual's current state, . The machine then applies the 
regular expressions from the event table to , which 
becomes the next machine state, .

6. Initial input list 8. Final output list 

to types of states and events.  The event table tells the machine how to recognize events and what operations to perform on the 
description of the current state.  For each individual in the data set, the machine uses the state table to map indicators in the data 
matrix into a list of events (Figure 4).  It then uses the event table to map the list of events into a list of states and transitions 
(Figure 5).  


