
Flows in the Child Welfare Systems: A Computation Theory
Approach to Developing Numerical Reference Modes
Peter Hovmand, Melissa Jonson-Reid, and Brett Drake
George Warren Brown School of Social Work, Washington University in St. Louis

 Service systems are inherently complex, both in their detail and dynamics. System
dynamics offers great potential to help policy makers, administrators, and researchers
make better decisions about service system changes. However, efforts have been
constrained by not being able to construct numerical reference modes without
making strong assumptions about the structure of the case flows. This paper presents
a novel approach to generating numerical reference modes from administrative data-
bases that is based on computation theory. The method is validated with simulated
datasets, and its feasibility and substantive significance demonstrated in an analysis
of a merged child welfare database containing 10,250 children and adolescents.

METHODABSTRACT

PROBLEM

 The main inspiration behind this ap-
proach comes from computation theory
(e.g., Lewis and Papadimitriou, 1981) in
seeing the way that people move through
service systems as a finite state machine
where the events are letters in an alphabet,
the states are words over the alphabet, and
the pathways are strings of words or sen-
tences. The solution involves specifying a
machine that operates on strings using
regular expressions.
 The procedure is illustrated in Figures 4
through 5 for the first individual in the data
matrix (see Figure 2). The user describes a
machine specific to the data set in terms of
a state table (Figure 3a) and event table
(Figure 3b). The state table maps variables

 The major benefit of this approach is that it facilitates the exploration and reduction of the stock and flow struc-
ture of a service network that has high detail complexity. It can be implemented in a variety of programming lan-
guages and is relatively efficient, and thus practical to use on large data sets. Corresponding numerical reference
modes and estimates can automatically be extracted from the reduced network, and recalculated as one gains a
deeper understanding of the system.
 Next steps include (1) analyzing the child welfare network with respect to a variety of outcomes, and identifying
the major pathways and feedback loops contributing to those outcomes, and (2) comparing service pathways by de-
mographics and risk groups. Working with stakeholders and other researchers, these results will then be used as the
basis for a system dynamics model of a dynamic problem in the child welfare service system.

Service 1

Service 2

Service 3

Service 4

Time

t1 t2 t3 t4 t5 t6 t7 t8
t9 t10

a1

bs
1

cs
1

be
1

a2

ce
1

cs
2

bs
2

a3

ce
2

d1

be
2

Figure 2: Individual i=1 passing through four service
systems across 10 points in time

1 2 3 1 2 1 2 1 2 1 2 21

1 1 5 7 2 7 4 10 3 7 6 8 9 .
2 . . . 2 . . . 2 5 3 . 1 4
3 1
4 . . . 1 . 2 . 1 . 3 . . .
5 2 . . 1 . 3 2 .
6 . . . 1 . 2 . 2 . 3 . . .
7 . . . 2 . 3 . 1 . 2 . . .

i a a a bs bs be be cs cs ce ce d d

=

D

Figure 1: Data matrix with 6 sets of indicators of
events and services for 7 individuals f :

a1
a2
a3
bs1
bs2
be1
be2
cs1
cs2
ce1
ce2
d1
d2

5. Final list1. Initial list 2. Map
indicators to
types of events

3. Sort list of
event types by
time, t

4. Merge events
that occur at the
same time into a
single event

Figure 4: Generating a list of events from indicators in the data matrix

 Administrative databases will contain a variety of information including demo-
graphic variables and variables with dates of key events such as the opening or closing
of cases. The data may live in a flat database, relational database, or distributed over a
variety of unconnected databases. However, most statistical analyses require a matrix
or flat database as an input. Thus one will typically construct a single table from mul-
tiple tables with each row corresponding to a case and each column representing a
variable. In order to capture multiple service dates, one usually creates a series of indi-
cators or date variables for each type of service (for example, see Figure 1).

{ a}

{ Unk_a}

{ a} { b} { c}

{ b} { c}{ a} { b} { d}

{ b}

{ a} { c}

{ c}

{ b} { d}

{ Unk_b}

{ Unk_right}

{ Unk_c}

{ d}

{ Unk_d}

{ Unk_left}

Figure 6: Graph of network flows

CONCLUSIONS AND NEXT STEPS

LIMITATION

RESULTS

 Such data are likely to have individuals with co-occurring events and overlapping
periods of services (see Figure 2). This presents a problem when there a large number
of cases, many types of services and events, and thus uncertainty about the stock and
flow structure of a service system. If, however, one had an unbiased algorithm for lim-
iting the number of combinations to a manageable level of detail complexity, then
one could build on existing graph or network analysis tools for interactively identify-
ing, exploring, interpreting, and simplifying the major stocks and conserved flows in a
service system.
 The problem is then to find and specify an algorithm for mapping each row in the
data matrix D into a list T of transitions and states such that, T (a) reflects the structure
of individuals’ pathways through service systems where there are co-occurring events
and overlapping periods of service, and (b) is isomorphic with a stock-and-flow de-
scription of service pathways.

 The output is a list of states, tran-
sitions, and times that can be used
for a wide range of analyses includ-
ing the graph and network analysis,
calculation of transition matrices,
numerical reference modes, and es-
timation of delays. Figure 6 is a
graph of the network generated
from the data shown in Figure 1 and
isomorphic with a stock and flow
diagram of the pathways through a
service system.
 The circles represent states or
stocks, while the arcs represent case
flows with the arrow pointing in the
direction of the flow. Solid lines indi-
cate where two or more individuals
passed through a flow, while dashed
lines indicate that only one person
passed through the flow.
 The procedure is practical for
relatively large merged administra-
tive databases. A merged database
with 10,250 individuals and 27 types
of states and events over nearly 200
indicator variables required two
hours to process on a Dell Pentium 4
with 512 MB of RAM. The computa-
tion time required is linear, and pro-
cessing can easily be distributed
over several computers and run in-
crementally as additional data
become available

 Imputing transition events intro-
duces an uncertainty in some states.
For example, in Figure 7, imputing
the transition at ta will result in a
transition from {a}{c} into {c}, while
imputing the transition at tb will
result in a transition from {a} into
{unk_a}. This could lead to descrip-
tions of the service network and ref-
erence modes that are sensitive to
assumptions about the delay be-
tween {a} and the imputed event.
This is an inherent limitation of
trying to map a hybrid representa-
tion of a system into a continuous
representation.

Figure 3: Description of machine

Name Regexp Description
{a} a. Service 1
{b} bs. Service 2, start
{be} be. Service 2, end
{c} cs. Service 3, start
{ce} ce. Service 3, end
{d} d. Service 4

Event Lregexp Rregexp Description
[{]a[}] [{]a[}] Service 1 event
([{]b[}]).*([{]be[}]) ([{]b[}]) ([{]be[}]) Service 2 interval
([{]c[}]).*([{]ce[}]) ([{]c[}]) ([{]ce[}]) Service 3 interval
[{]d[}] [{]d[}] Service 4 event

(a) State table

(b) Event table

Figure 7: Imputation of unknown states and
times and

Service 1

Service 2

Service 3

Service 4

Time

t1 t2 t3 t4 t5 t6

a1

bs
1

cs
1

be
1

a2

ce
1

ta tb

Event imputed at ta

Event imputed at tb

Figure 5: Generating a list of states and transitions from a list of events

g :

e t j e t k Qk-1 Qk-1 + e Qk+1 Sk Sk+1 t Imputed

7. The machine reads each line of input from and adds that
to the last machine state, , to generate a description of the
individual's current state, . The machine then applies the
regular expressions from the event table to , which
becomes the next machine state, .

6. Initial input list 8. Final output list

to types of states and events. The event table tells the machine how to recognize events and what operations to perform on the
description of the current state. For each individual in the data set, the machine uses the state table to map indicators in the data
matrix into a list of events (Figure 4). It then uses the event table to map the list of events into a list of states and transitions
(Figure 5).

