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System Dynamics (SD) is a special type of simulation modeling where output 

validity refers to validating the patterns of dynamic behaviors, such as oscillations, 
growth or decline. The developers and users of these models (the decision makers and 
people affected by decisions based on such models) are all rightly concerned with 
whether a model and its results are “valid.” Structural model validity and validation 
have long been recognized as one of the main issues in system dynamics. This concern 
is addressed through pattern recognition and testing in this paper. Another issue in 
dynamic simulation methodology is parameter calibration; assuming that the structure 
of simulation model constructed by the user is valid. Parameter calibration is the 
minimization of an error function which is a measure of the correspondence between 
numerically calculated output patterns and the respective real behavior patterns. We 
offer a software that does automated parameter calibration with respect to a given 
(desired) dynamic pattern. This particular feature can also be used in policy 
improvement design. 
 
Keywords: Dynamic Pattern Recognition, Structure validity Testing, Parameter 
Calibration 
 
 
INTRODUCTION 
 
Some earlier reviews of System Dynamics methodology criticized it for not having 
formal / objective validity tools (Ansoff and Slevin, 1968; Nordhaus, 1973). Articles by 
Forrester (1968) and Forrester et al. (1974) are responses to these criticisms. Forrester 
attempts at establishing formal tools for model validation (Forrester and Senge, 1980). 
Forrester outlines the “formal” validation concept and introduces a set of tests for 
structure and behavior validation.  
 
The importance of model validation in the development of System Dynamics discipline 
is emphasized in literature (Forrester and Senge 1980; Sterman 1984; Barlas 1989a; 
Barlas 1996, Barlas and Carpenter, 1990; Richardson, 1996). However, despite its 
importance, Barlas (1996) states that only three of the articles published in System 
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Dynamics Review (1985-1995) deal with model validity/validation. It is observed that 
the majority of the literature on general model validation discusses behavior validation 
due to lack of recognition of the importance of structure validity, as well as the relative 
ease of developing tools for behavior validation. Barlas (1989a) and Barlas et al. (1997) 
provide a set of tools (“BTS” and BTS II) for testing the behavior validity of the model. 
Structural aspects are discussed in (Forrester, 1961, ch. 13; Forrester and Senge, 1980; 
Barlas, 1989b; Peterson and Eberlein, 1994). 
 
There are some system dynamics validation tools and tests previously developed. But 
the existing tests/tools are not integrated to the  available simulation software packages 
and they are platform-dependent.  

 
We design a validity testing and parameter calibration Software (SiS) that does pattern 
recognition/testing/calibration with full integration with the simulation software 
VENSIM. ‘Validity Testing’ part of the software takes the dynamic behavior generated 
by the model, “recognizes” it and tests if it belongs to the class hypothesized by the 
modeler. It is also possible to set values for some parameters of the model and perform 
the test afterwards.  
 
Second contribution of the software is that by assuming the structure of simulation 
model constructed by the user is valid; SiS software  finds those parameter value sets 
for the model that best fit the real data patterns. In order to make repetitive parameter 
adjustments, the simulation package Vensim is run automatically by the aid of internal 
commands. There is no existing simulation packages which automatically achieve this 
calibration process. 
 
In classical context, parameter calibration is done by the minimization of an error 
function which is a measure of the correspondence between numericaly calculated 
output values and respective measurements. However, in the software developed, 
Hidden Markov Models (HMMs) are used for pattern recognition. Each pattern class is 
characterized by a nonstationary HMM which is built using a set of training samples. As 
a result of the training procedure, one HMM is obtained for each class. The 
classification is based on the state-optimized likelihood function which is a measure of 
how well the input signal is representative of a given class. (Barlas and Kanar 1999) In 
parameter calibration, the likelihood values obtained for the specified class are used to 
find best parameter set, instead of using minimization of an error function. In order to 
make repetitive parameter adjustments, Vensim is run automatically by the aid of 
internal commands. 

 
INDIRECT STRUCTURE TESTING SOFTWARE (ISTS) 
 
ISTS is a computerized algorithm that seeks to automate the structure-oriented behavior 
testing in model validation. (Barlas and Kanar 1999; Kanar 1999) In such validity tests, 
the modeler makes a claim of the form: “if the system operated under condition C, the 
behavior B would result”. The model is then run under condition C and is said to “pass” 
the test, if the resulting behavior is similar to the expected behavior. In the automated 
structure-oriented behavior testing environment, the modeler hypothesizes a dynamic 
behavior by choosing a dynamic pattern from a template of all basic patterns (shown in 
Figure 1). The computerized algorithm takes the dynamic behavior generated by the 



 3

modeler, “recognizes” it and tests if it belongs to the pattern class hypothesized by the 
modeler.  
 

 
 

Figure 1. Basic Dynamic Patterns 
 
 
 

The algorithm used in the implementation is a pattern recognizer/classifier based 
on Hidden Markov Models. The general flowchart of ISTS algorithm is seen in the 
Figure 3. (Barlas and Kanar 1999; Kanar 1999) 
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Figure 2. List of dynamic behavior pattern classes 
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Figure 3. General Flowchart of ISTS Algorithm 
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Figure 4.  A dynamic pattern example. 
 
 

Hidden Markov Models 
 

Statistical pattern recognition is based on the classification of feature vectors extracted 
from the data. In most shape recognition problems, representation of the whole data 
with a single set of feature vectors is not desirable. It is difficult to model the variations 
in the characteristics along the shape with a single vector ( He and Kundu, 1991). 
Hidden Markov Models do not represent the whole data with a single feature vector. In 
HMM based pattern recognition, one dimensional data is divided into segments and a 
sequence of feature vectors is extracted. 

 
Selection and Extraction of Features 

 
In the dynamic behavior recognition problem, a dynamic behavior can be denoted by a 
sequence y(k), k= 1, 2, ….., K, where K is the number of data points. As depicted in 
Figure 4. , such a signal would be a somewhat distorted ( or “noisy”) version of one of 
the patterns given in the template of Figure 1. The procedure starts with dividing the 
sequence  
 

   yt (l), t= 1, 2, ….. T: 
 yt (l)=y[(t-1)L+l],  l=1, 2, …..L. 
 
here, the choice of value T is one of the decisions to be made in the design of the 

recognition system. 
 

The next step is to extract features from each data segment. Basic dynamic 
patterns are characterized by successive time segments of growth or decline and their 
trends (as growing or declining rates). Therefore, it is reasonable to form the feature 
vector using the slope and 2nd derivative(“curvature”) information of the data in each 
segment. The features can be obtained by fitting polynomials to each segment data. The 
slope of the first order polynomial provides trend information, which is either growth, 
decline or constant. The second order polynomial can be used to obtain the second 
derivative, which will yield the curvature information. In addition to slope and 



 7

curvature, the level of the state variable also provides useful information. Thus, the 
segment mean becomes the third element of the feature vector. 

 
In summary, each feature vector is M=3 dimensional and are given by three 

components; slope, curvature, and mean: 

                               
Therefore, the result of the segmentation and feature extraction process for a 

pattern sample using T number of segments is a sequence {o1, o2, …..,oT }. For the 
example signal in Figure 4  -and specially for its 5th segment  –feature extraction yields 

                               
 It is quite flexible in the sense that new pattern classes can be added without 

having to re-train for all the existing classes. Also by training it with more and more 
samples, the classification power of the algorithm can be improved. (See Barlas and 
Kanar 1999; Kanar 1999 for more information) 
 
SOFTWARE IMPLEMENTATION and ILLUSTRATIVE EXAMPLES 
 
A computer program, Validity Testing and Calibration Software (SiS), has been 
developed for the purposes of integrating existing ISTS algorithm into the existing 
VENSIM dynamic system simulation software and automating the validity testing and 
parameter calibration of System Dynamics models. The software is written in JAVA 
programming language by using Sun One Studio Compiler Version 5. 
 
“General Pictures” for 2 Main Fuctions of the Software 
 
This section presents the overview for the two main processes which are the ‘Validity 
Testing’ and ‘Parameter Calibration’. 
 
Validity Testing 
 
This function provides user to check the validity of a model output behavior according 
to the hypothesized pattern. Furhermore, user has the chance to change parameter values 
without any change on model and to make validity check by these desired parameter 
values.  
 



 8

 
Figure 5. General Picture of the Processes in Validity Testing function. 
 

• Process Flow for “Validity Check”:  
 
1. Browse a Model: User selects a simulation model which was previously created 

to check the validity of its output pattern.  
      Hypothesize Output Pattern: User select an output pattern among 25 previously 
defined patterns to make hypothesis for the model output. 

 
2. “Main” part of our software takes these inputs and sends them to “integrator” to 

communicate with VENSIM.  
 
3. “Integrator” part loads the model to VENSIM and give the command to start 

simulation. 
 
4. “Simulation Output” that is created by VENSIM is taken by “integrator” part. 
 
5. & 6. “Main” part takes the simulation output pattern and sends it to “ISTS 
Algorithm” to check its validity. 
 
6. ISTS Algorithm checks the validity of this pattern according to the hypothesized 

pattern. Likelihood values of the simulation output to each previously defined 
pattern is obtained.  

 
7. Result: Likelihood values and the result, whether the hypothesis passes or fails, 

are given to the user. 
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Parameter Calibration 
 
This function simply provides user to make parameter calibration within a model. 

User has the option to choose a pattern type or to load real data. By choosing one of 
these options, the desired pattern that the model output will follow is determined. 

 
Figure 6. General Picture of the Processes in “Parameter Calibration”. 
 

• Process Flow for “Parameter Calibration” function: 
 

1. User selects a previously created simulation model, enters maximum and 
minimum values and trial number for each parameter that he desires to calibrate. 
User also specifies a pattern according to which the parameter calibration will be 
processed. 

 
2. “Parameter Set Creator” part of our software takes these inputs from user and 

creates parameter sets for all combinations of the parameter value levels. Then it 
starts to send one set at each time to “integrator” part. 

 
3. “Integrator” part send this parameter set to VENSIM and make it to start 

simulation with these parameter values. 
 
4. Simulation output data is taken by “integrator” part of our software. 

 
5. &  6.  Output data of VENSIM is sent to ISTS algorithm to obtain its likelihood 
value for the specified pattern.  

 
7. Likelihood value of the modern output for the specified pattern is taken by ISTS 
Algorithm and stored in “storage” part for future comparison. 
 
A new parameter set which was created in 2 step is sent to integrator and goes into 
similar processes. 
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8. After processing of all parameter sets, our software compare all stored likelihood 
values. Parameter set that gives the best likelihood value for the specified pattern is 
found and then sent to user as output, “best parameter set”. 

 
 
Illustrative Examples 

 
Several examples that illustrate the usages of the software are presented in this 

section. There are four usages mode of the software which is asked from the user at the 
start. The usages are Validity Testing with Default Parameters, Validity Testing by 
Setting Parameters, Parameter Calibration with Specified Pattern and Parameter 
Calibration with Input Data 
 
 
Validity Testing with Default Parameters 
 

Figure 7. shows output of a Vensim model for a selected variable. The pattern  is 
S-shaped exponential growth and decline to equilibrium (Growth level is greater than 
decline level). Hypothesis pattern selected from Figure 1 and 2 is D2GRB with 
convergence to nonzero. (Note that the user makes the hypothesis without seeing the 
graph.) 
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Figure  7. Simulation Output (with default base paraameters) 
 
 
The state-optimized likelihood values for the pattern are tabulated in Table 1. The 
maximum value 1,020065 is found to be for the hypothesized class. The decision of the 
program is “PASSED” as expected. 
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ZERO0 -10 GR1DA -16,7075 SSHDC -25,4027 G2PED -8,20289
CONST -10 GR1DB -7,26676 PEXDC -34,4607 OSCCT -21,6809
PLINR -10 GR2DA -7,08969 D1GRA -13,9766 OSCGR -21,6809
NLINR -10 GR2DB 1,02006 D1GRB -10,9594 OSCDC -10 
NEXGR -15,7189 D1PEG -11,0744 D2GRA -9,18981     
SSHGR -15,8379 D2PEG -15,9738 D2GRB -8,76851     
PEXGR -29,1582 NEXDC -17,7455 G1PED -10,4806     

 
Table 1 . Likelihood Values of simulation behavior in Figure 7 compared to the 
D2GRB pattern (shown in Figures 1 and 2).  
 
 
Validity Testing by Setting Parameters 
 

The user changes the values of the two parameters of a Vensim model. Figure 8  
shows the output of the model with default parameters and Figure 9. shows the output 
of the model after changing the parameters. If the user has mastery over the model, 
he/she expects that the pattern would be NEXGR ( Negative Exponential Growth) after 
parameters are set to new values and without seeing the second figure, she makes the 
hypothesis that the pattern is NEXGR. With this usage of the software, extreme 
condition tests can be done easily. 
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Figure 8. Simulation Output (with base parameters) 
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Figure 9. Simulation Output (with changed parameters) 
 
 
The state-optimized likelihood values for the pattern are tabulated in Table 2 below. The 
maximum value 1,5198 is found to be for the hypothesized class. The decision of the 
program is “PASSED” as expected. 
 
ZERO0 -10,0000 GR1DA -7,0232 SSHDC -22,5683 G2PED -1,7966 
CONST -10,0000 GR1DB -3,4047 PEXDC -20,1837 OSCCT -21,6809 
PLINR -10,0000 GR2DA -4,1902 D1GRA -4,4541 OSCGR -21,6809 
NLINR -10,0000 GR2DB -3,1932 D1GRB -7,9637 OSCDC -10,0000 
NEXGR 1,5198 D1PEG -14,4001 D2GRA -2,5036     
SSHGR -2,3409 D2PEG -18,2043 D2GRB -7,4449     
PEXGR -31,9219 NEXDC -18,2829 G1PED -2,4259     

Table 2. Likelihood Values of simulation behavior in Figure 9 compared to the 
NEXGR pattern (shown in Figures 1 and 2). 
 
 
Parameter Calibration with Specified Pattern 
 

Figure 10  shows output of a Vensim model for a selected variable. The pattern is 
PEXGR (Positive Exponential Growth) The user specifies the calibration pattern as 
SSHGR (S-shaped Growth)  and selects three parameters of the model and gives the 
range and the number of values that will be tried in the interval.   
 



 13

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

0 1 2 3 4 5

 
Figure 10. Simulation Output (with base parameters) 
 
 
Table 3. The ranges and number of values tried for each parameter. 

Selected Parameters Min Max
Number of Values In the 
Interval 

1. advertising effectiveness 0 1 5 
2. customer sales effectiveness 0 8 5 
3. sales size 1 5 5 

 
 
 Result of the Parameter Calibration  

After simulating and automatic testing for each parameter value set (125 sets formed in 
this example), the best parameter set is found and Figure 11  below shows the output 
after the parameters are set to their best values. The pattern is SSHGR as the user 
specified. 
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Figure 11. Simulation Output as Desired (after automated parameter calibration). 
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Best parameter set is 41 
Best Likelihood Result: 1.2119776136254248 
Best Parameter Set:  
1. advertising effectiveness: 0.25 
2. customer sales effectiveness: 6.0 
3. sales size: 1.0 
 
 
Parameter Calibration with Input Data 
 

The user browses a real data pattern input as shown in the Figure 12. The ouput of 
the Vensim model is to be calibrated to the class of this input data pattern. 
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Figure 12. Input Data Pattern  
 
 Figure 14 shows the output of a Vensim Model in the base run. The output will 
be calibrated to NEXGR, which is the class of the input data pattern as seen on the 
results screen of the software in Figure 13. 
 

 
 
Figure 13. A view of the SiS interface during parameter calibration. 
 
 
RESULTS SCREEN   
Input Data is in class 'NEXGR' (Negative Exponential Growth)  
Likelihood value for the class is -0.9282193924472677 
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Figure 14.  Simulation Output (with base parameters) 
 
 
 Result of the Parameter Calibration  

After automated testing for each parameter set (25 sets formed in this example), the best 
parameter set is found and the Figure 15 shows the output after the parameters are set to 
their best values. The pattern is NEXGR which is the class of the input data pattern. 
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Figure 15.  Simulation Output (after parameter calibration to match the input pattern) 
 
 
Best parameter set is 21 
Best Likelihood Result: -3.7109428620957883 
Best Parameter Set:  
1. advertising effectiveness: 5.0 
2. customer sales effectiveness: 0.0 
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CONCLUSIONS 
 
 In this paper a software that seeks to partially automate validation  and 
calibration of system dynamics models is presented. ‘Validity Testing’ part of the 
software takes the dynamic behavior generated by the model, “recognizes” it and tests if 
it belongs to the class hypothesized by the modeler. It is also possible to set values of 
selected parameters of the model and perform the test afterwards. Software is flexible in 
the sense that new pattern classes can be added without having to train for all the 
existing classes. A similar advantage is the ever improving the classification power of 
the software, by training it with more and more samples. 
 
 In the software developed, Hidden Markov Models (HMMs) are used for pattern 
recognition. Tests show that the performance of our validity testing algorithm is 
satisfactory, but it naturally depends on the parameters of the available HMMs. 
Especially oscillatory, growth-and-decline and decline-and-growth patterns is to be 
improved furtherby adding new samples for these classes. Training the classes with 
more and representative samples should improve  the performance of the algorithm. 
 

‘Parameter Calibration’ part of the software can be done in two different modes. 
In the first one, the user specifies a calibration pattern out of the existing basic classes 
and model output is calibrated to fit the specified class. This mode can also be used for 
policy improvement: the user may specify a desirable behavior pattern, select a set of 
policy parameters to be calibrated and the software will provide a set of policy 
parameter values that will yield the desired output behavior pattern.  In the second 
mode, user browses real (input) data pattern and the model output is calibrated to fit to 
the class of the input data pattern. The advantage of the second mode is that the user is 
not required to have mastery over the model since he/she is not expected to specify a 
pattern. This mode in a sense offers an ‘optimal’ parameter estimation procedure.  
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