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Abstract 
 When a model is elaborated, the first thing is to see if the experiments are well 
described by the simulation responses. If the model has not to be changed or adapted, 
a statistical analysis has to be done to have a satisfactory confidence region of the 
parameters. If the statistical reliability of the parameters is suitable, the model can be 
used for a more advanced study of the system, else, an optimal experiment design may 
be developed in order to reduce the costs of experiments. The aim of this study is to 
elaborate a method to be nearing the true confidence region. It is based on a diploid 
genetic algorithm which allows to have parameters estimation and their joint 
confidence region formed by a set of points. An enzymatic reaction is presented as a 
non linear biological application and the experimental data vs time allows to propose 
a dynamical model. 
 
 
I. INTRODUCTION 
 

 Many methods exist for determining optimal parameter estimates in systems of 
ordinary nonlinear differential equations. In data analysis, it is also very important to 
have a realistic measure of the statistical confidence of the parameter estimates. This 
requires the calculation of at least individual confidence limits and preferably the joint 
confidence region associated with the parameters. Some statements must be reported: 
the most probable value of the parameters, the confidence region of the parameters 
and a probability statement about the confidence domain (Van Boekel 1996). An idea 
of the magnitude of such regions is of special interest when the models are based on 
mechanistic considerations. Indeed, the parameters in nonlinear systems often have a 
specific physical meaning. 
 The individual confidence limits at the selected probability level of (1-α) are 
often determined in the litterature but they do not take into account the variability of 
all parameters simultaneously. The remaining parameters are held constant at their 
optimal value while individual confidence limits are determined. The joint confidence 
region of the parameters certainly give more information about their accuracy (Emig 
and Hosten 1974). 
 Nonlinear systems are often considered nearly linear in the parameters around 
the optimal set of parameters. So, with the linearization of the model in its vicinity, it 
is developed in Taylor series retaining only the partial derivatives of first or second 



order (Frederiksen 1998). In this case, the theory assumes that the mathematical 
model can be adequately linearized in the neighbourhood of the optimal parameter 
estimates. Another method is to treat confidence regions as constraints in a nonlinear 
programming model. It is shown that the confidence regions depend on the value of 
the Lagrange multiplier of the region’s constraint (Del Castillo 1996). All these 
authors make linear assumptions, which can be checked near optimal parameter 
estimates, to have an ellipsoidal approximation of the confidence domain. So, 
parameter estimates and their joint confidence regions are only as good as the linear 
approximation. The calculated confidence domains are asymptotic and therefore they 
may underestimate the real confidence regions. 
 Estimation of confidence region for nonlinear models is not straightforward. 
The nonlinearity of the function and the experimental data nature give an asymetry to 
the confidence region contrary to the linear one. Recently, the nonlinear approach has 
been developed (Walter and Pronzato 1994) to determine the rigorous confidence 
region of the parameters. Without knowledge of the standard deviations of the 
measurement errors, the authors give the expression of the true confidence domain by 
using orthogonal projection on tangential plane to expectation surface of the model 
output. 
 In this article, we use the two approaches to find the confidence region of 
parameters of a biochemical example. After the choice of the kinetic model for the 
studied enzymatic reaction and its parametric identification, the uncertainty on 
parameters is defined with linearization of the system on the one hand and with the 
Walter-Pronzato’s approach on the other hand. The parameters are obtained by 
minimization of a discrepancies function between experimental data and simulation 
responses, and the confidence region by statistical test optimization. So, an 
optimization method has been developed, based on genetic algorithms, to approximate 
the confidence region by a set of points. 
 
 
II. IDENTIFICATION AND CONFIDENCE REGION OF PARAMETERS 
METHODOLOGIES 
 

II.1. A diploid genetic algorithm as an optimization method 
 

 Genetic algorithms can be considered as a stochastic optimization method 
which is able to search in a large space and to make evolve solutions set (called 
population). This method is inspired by Darwin’s concept by analogy with the 
evolution of populations (Goldberg 1989) and its popularity has increased in the last 
decade to locate optimal solutions in complex landscapes and to keep a set of good 
solutions in the last generations. In our problems, a Diploid Genetic Algorithm (DGA) 
is used whose principles were previously elaborated (Perrin et al. 1997). The diploid 
version is kept because its performances were found to be better compared with a 
haploid one (Fonteix et al. 1995). Each individual (which can be a possible solution of 
the problem) is described by a four-tuple (aj, aj’, Dj, xj). aj and aj’ represent the two 
alleles of the j gene, Dj is the dominance of one allele over the other chosen in {0,1} 
values and xj represents the phenotype which is the result of the combination of the 
respective alleles, aj and aj’: 

xj=Dj.aj+(1-Dj).aj’    (1) 
 

 An initial population is randomly created by generating a set of m points from 
the search area. Each point is tested and evaluated. If this population is not the 



solution, then selection and genetic operators are used to make it evolve. Only the 
better individuals will survive (elitist selection) and participate in the creation of a 
new generation. The reproduction of the individuals in the diploid model consists of a 
multi-crossover of the two chromosomes of each parent, a mutation and a 
homozygosity. Mutation is, for the selected individual, a randomly draw for all the 
genes of the two chromosomes and all the dominances. Homozygosity allows to 
modify a child by copying out their phenotypes on their two chromosomes. A 
homozygote is created with aj and aj’ defined by the multi-crossover method and the 
dominance is as 0<Dj<1. The phenotype is deducted: xj=Dj.aj+(1-Dj).aj’ and alleles 
become equal: aj=aj’=xj. If the generated child is worse than the worst parent, he is not 
adapted, he is eliminated and another is created to complete the generation. The 
population of each generation is evaluated until it satisfies the stop criterion: fmax-
fmin<ε where fmin and fmax are respectively the minimal and the maximal objective 
function values in the current population and ε is the given precision for solution 
estimation. Figure 1 summarizes the working of the DGA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: diagram of the diploid genetic algorithm. 
 
II.2. Parametric identification 
 

 When a mathematic expression is proposed to describe physical, chemical or 
biological aspect of a system, the goal is to obtain the best model as possible. This 
assertion needs a criterion definition J(θ), scalar function of model parameters θ 
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which have to be optimised. The parameters optimal value depends on the choice of 
the criterion and a certain can be elaborated with the knowledge and the assumptions 
about statistical properties of the measurement errors. The fitness criterion depends on 
the discrepancies between the calculated and the measured values: yjmod(ti,θ)-yjexp(ti) 
for the kind of measure j at time ti. We do not make an overview of the different used 
criteria in this article but we present the most useful approaches. 
 A usual approach is to estimate the unknown parameters such that the 
weighted sum of squared discrepancies is minimal: 
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where the positive weights, ωj, are based on the accuracy of the measurements, N the 
kinds of response number and njexp the number of j measurements. This is called the 
weighted least squares criterion when a priori knowledge about the accuracy of the 
measurements is available. 
 In most practical situations, the standard deviations of the measurement errors, 
σi, are unknown and different kind of responses, which can be of different rough 
estimates, are measured. The fitness criteria used in nonlinear system depend on the 
assumptions and knowledge about the measurement errors. From the probability 
density function of the measurement errors f

~
, the maximum likelihood estimates of 

the parameters can be derived by maximizing (or minimizing the opposite) its 
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If we assume that the measurement errors are stochastically independent and normally 
distributed N(0,σj

2), the log-likelihood is then deducted: 
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 A lot of other criteria can be elaborated with other assumptions on the 
measurement errors distribution (Walter 1987) but the aim of this article is not to 
make a state of the art in parametric identification. The studied application has only 
one kind of response, so the choice of the criterion is simplified (N=1 and ωj=1) 
because fitnesses are equivalent and are restricted to the least squares criterion. In the 
following parts, only the mono-response case is taken into account. 
 
II.3. Uncertainty on parameters 
 

 In the general case, the search of the best parameters value for the chosen 
criterion is not always enough. With the uncertainties on experimental data and 
numerical errors, uncertainties on parameters have to be estimated to validate the 
model. Only one response is available, so the following notations njexp, yjmod, yjexp and 
σj are respectively transformed into nexp, ymod, yexp and σ. 
 

 II.3.1. Known variance 
 Let be denoted prediction error: e(ti,θ*)=ε(ti) for i=1..nexp experiments and 
where ε(ti) are stochastically independent variable normally distributed N(0,σ2) with 



known variance σ2. θ* is the true parameters vector. The maximum likelihood method 
gives the criterion to minimize: 
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give a 100(1-α) % confidence region for parameters. 
 
 II.3.2. Unknown variance 
 In most practical situations, the response variance is not known and prediction 
error is supposed as an output error: 
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When θ is varying, the output ymod describe a hypersurface Sm, which is a hyperplan 
for a linear model in parameters and a curved hypersurface in the general case for a 
nonlinear one. Let Π(ti,θ) be the orthogonal projection matrix on the tangential plane 
to Sm in ymod(ti,θ) (Walter and Pronzato 1994): 
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nexp=dim (yexp) and nθ=dim (θ) are denoted. 
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The probability, that the true value of the parameters is in the domain so defined, is 
(1-α) and the expression is independent of the variance. It is essential to notice that 



the number of experiments has to be higher than the number of parameters to be 
identified: θ> nnexp . If θ= nnexp  (particular case depending on the experimental 

design), the rigorous confidence domain of the parameters cannot be defined by the 
Walter-Pronzato’s approach but by linearization of the model (Cunha 1999). 
 
 II.3.3. Linearization 
 Let θ̂  be denoted an estimation of the true parameters θ* by the minimization 
of the criterion J(θ). 
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independent. With the first order approximation, the 100(1-α) % confidence region of 
the parameters θ* is given by (Draper and Smith 1981): 
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This expression needs a first estimation of the optimal parameters and is obtained with 
the classical assumption: linearity in parameters in the neighbourhood of the true 
optimal value. 
 
 
III. APPLICATION TO A BIOCHEMICAL PROCESS 
 

III.1. Example presentation 
 

 A classical enzymatic reaction is considered, which is a building block for 
many biochemical processes. The following chemical equations are given: 
 
 

E + S                   C     (12) 

 
C                   E + P     (13) 

 
An enzyme E with a substrate S transitorily gives a specific complex enzyme-
substrate C before the researched product P. These chemical equations were proposed 
after the equilibrium between E, S and C is fast compared to the reaction (13. This 
scheme, called the Michaelis-Menten kinetics, is a simple approach in enzyme 
catalysis processes (Wong and Whitesides1994). The formation of P directly depends 
on the complex concentration and these measurements are available. The state 
variables in the reaction scheme are the concentrations of the enzyme [E], substrate 
[S] and complex [C]. A classical mathematical description of the problem is then 
proposed in a batch reactor (Stortelder 1998): 
 

k1 

k2 

k3 



C][kE][S][k
dt

d[S]
21 +−=      (14) 

 

[C]k[C]k[E][S]k
dt

d[C]
321 −−=     (15) 

 

00 [S][E][S][E] +=+       (16) 

 
The initial values are [S]0=1.0 mol.l-1, [C]0=0.0 mol.l-1 and [E]0=1.0 mol.l-1. The 
vector of unknown, positive parameters is θT=(k1,k2,k3). 
 
III.2. Parametric identification results 
 

 The parametric identification is made with the minimization of the least 
squares criterion by the diploid genetic algorithm described in II.1. In this simple 
example, maximum likelihood estimation and least squares criterion are equivalent. 
The obtained parameters are given in table 1: 
 

Table1: compared estimation of the parameters. 
 

 Genetic algorithm Stortelder 1998 
k1 
k2 
k3 

0.683 
0.311 
0.212 

0.683 
0.312 
0.212 

J(θ) 4.1 10-4 4.1 10-4 

 
Stortelder uses a gradient method (Levenberg-Marquardt) to determine the unknown 
parameters, while we use a genetic algorithm. The results showed in table 1 are 
similar. An evolutionary algorithm is certainly not the best method to solve this 
simple reaction scheme but it gives a satisfactory result too. Figure 2 shows result 
simulation of the complex concentration with the obtained parameters. 
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Figure 2: simulation response and experimental data 

of the complex concentration vs time. 

 



III.3. Confidence region with Walter-Pronzato’s approach 
 

 We propose a procedure, based on the diploid genetic algorithm described in 
II.1, to plot the confidence region of the kinetic parameters. The algorithm is adapted 
in the evaluation phase. The fitness criterion is f(θ) defined in equation (10). Elitist 
selection and genetic operators are used until all the individuals of the population 
satisfy the statistical test defined in (10). So, the last generation contains a set of 
points which are in the rigorous confidence region. The more the population has 
points, the more the domain is well defined. 1000 points are randomly chosen and 
evolve to obtain the plot of the confidence region in figure 3. A classical value for α is 
0.05 which corresponds to a reasonable risk. In this example, nθ=3 and nexp=20. 
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Figure 3: 95 % confidence region of the parameters with Walter-Pronzato’s approach. 
 
For a better understanding, projections of one parameter on the two others are 
presented. Gray points represent the domain and the black diamond the parameters 
optimal value. The asymetry of the confidence region is noticeable for this nonlinear 
system. The diploid genetic algorithm gives a set of points, that is to say an 
approximation of the confidence region but 1000 points define the domain with 
sufficient precision. 

 



III.4. Confidence region with linear assumption 
 

 In the same way, a procedure is developed, based on the diploid genetic 
algorithm, to determine the confidence region with the linear assumption. In this case, 
estimate the true parameters value by the minimization of the least squares criterion is 
the first step. In the second step, the DGA is used a second time to minimize the 
function defined in (11) and populations evolve until all the points satisfy the 
statistical test (11). For comparison, 1000 points are ploted in figure 4 and α is taken 
equal to 0.05. 
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Figure 4: 95 % confidence region of the parameters with linear assumption. 

 
Here, the symetry of the domain is noticeable. Moreover, the confidence region with 
the linear assumption is smaller than the one with the Walter-Pronzato’s approach. So, 
in this case, the linearization of the model tends to underestimate the real confidence 
region, but the domain gives a rather good idea of it, compared to the search space. 
The calculation time to determine the Π matrix is rather long so, after hypothesis had 
been satisfied, the linear assumption could be a good approximation. This last figure 
corresponds to the one found previously (Stortelder 1998). 
 

 



IV. CONCLUDING REMARKS 
 

 In this work, the determination of confidence region of parameters in nonlinear 
and dynamical systems was pointed out. It is a further stage in the parametric 
identification domain but necessary to choose a correct model. Two approaches are 
studied and compared to determine the confidence region. The obtention of the 
rigorous ones is demonstrate and an expression of it with the linear approximation is 
deducted. The diploid genetic algorithm allows to obtain these confidence regions 
with a set of points randomly generated initially which evolve and converge to the 
wanted domain. The linear assumption in the vicinity of the true parameter value is 
usually used in the litterature but can be far from the real confidence region in the 
case of a strongly nonlinear model. The linear case can give a first idea of the 
parameters uncertainty with a reasonable calculation time but cannot be substituted 
for the real confidence region. 
 When a confidence region is determined, a characterization of this one has to 
be made. It must be rather small for the parameter significance and does not show a 
correlation between the parameters. With the points obtained by the genetic algorithm, 
the volume can be determined as well as the orthogonal lengths of the confidence 
region. The parameter correlation can be defined by the ratio of the smallest length to 
the longest. In figure 3, we can notice a small uncertainty on k3 and two correlated 
parameters: k1 and k2, which is less obvious in the ellipsoidal region in figure 4. Some 
techniques could be developed by analogy with the determination of the eighen value 
of Fischer information matrix. The volume of the domain and the correlation of the 
parameters could be new criteria to find an optimal experimental design. 
 The enzymatic reaction is a rather simple nonlinear system in its modelling but 
allows to show the performances of our technique based on the Walter-Pronzato’s 
approach and on the adaptation of a genetic algorithm to determine the confidence 
region of the kinetic parameters. The same procedure could be used for more complex 
systems with an important number of parameters. For example, an emulsion 
polymerization process will be able to be studied to learn about its modelling. 
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