LEGO Approach in Teaching System Dynamics

Dong-Hwan Kim

(Electronics & Telecommunications Research Institute, sddhkim@soback.kornet.nm kr)

Back to the LEGO

In the childhood, we are used to constructing a tank, an airplane, and a house with the help of
LEGO. LEGO is composed of many building blocks. We can construct a house by connecting
blocks. We play LEGO with two steps: take an appropriate block and connect it into another
blocks chosen before. However, within the stock-flow modeling approach, one follows three
steps: create, connect, and define a variable. ‘

Among the three steps, the last step of defining a variable equation seems to be most
cumbersome. As far as the variable definition is not essential to the systems thinking but a main
obstacle to learning system dynamics, it seems desirable to make the burden of students light. If
we eliminate the last step of system dynamics modeling, one can go back to the childhood age of
playing LEGO. One can play without comprehending the task of formulating equations. LEGO
provides a fascinating analogy with which children can learn and play simultaneously. In this paper
1 propose a LEGO approach as a tool for allowing children to model their world.

The LEGO approach of this paper is different from Molecules suggested by Eberlein and Hines.
While LEGO approach deals with single typical variables and uses a graphic icon for representing
them, Molecules approach is concerned with a set of stock-flow variables. While generic models
and Molecules can be used by sy;stem dynamicists, the LEGO approach proposed in this paper may

be appropriate to the novices.

LEGO approach for system dynamics modeling

Most students have difficulties in formulating mathematical equations describing a concrete
system. A complex equation is like a hammer. If we misuse our hammer, it will hurt our finger
rather than a nail. If you are not an expert in using 2 hammer, you should use a nailing-machine
rather than a hammer. LEGO approach can provide a nailing-machine for teaching system

dynamics modeling to the children. A key point for implementing LEGO approach in system

257

dynamics modeling is to eliminate a step for defining equations. Figure 1 compares LEGO
modeling approach with traditional one. Figure 1 shows how to model a prey-predator system. In

the LEGO modeling approach, I provided icons for rate variables including prey-change and

predator-change. Prototype equations are embedded in these icons. As soon as one connects
another variable to these icons, a simple window pops up to ask what variable in the prototype

equation matches to the newly connected variable.

(Traditional Appro@ (LEGO Approach)
First step: create level and rate First step: create level and rate

5
Ll%ﬂ lPrev changg

| Predator _change I | Predatoﬂ

Second step: connect variables Second step: connect variables
double

| & lolick
—
Prey_change

—
Predator change | Predato;l

Third step: define variables
B i

v

pop up on connecting

Variable Definition Select a matching variable
Current value of Prey_change is 10.89000

Prey ** Carriage Return ** |& 0.1 .
Predator * predator_population
TIME * 0.001
) .
prey_population
<

Prey | OK ' ICancel I

Figure 1. Reduced steps in LEGO modeling approach

LEGO in EGO

The LEGO approach is implemented into my system dynamics software called EGO (Equations
as Graphic Object) that was made from object-oriented language (http://soback kornet.nm.kr/
~sddhkim). LEGO utility in EGO is most useful when a few formula repeat in many equations. A
system composed of many agents with similar decision rules is also a promising candidate to
model with LEGO in EGO (Resnick 1994).

Before playing LEGO in EGO, one must prepare user-defined icons. General guldelmes for
constructing a LEGO in EGO are as follows:

(D Find basic building variables (repeating equations).
@ Draw simple icons for depicting the variables.
(3 Write prototype equations using explanatory names (For example, use “population of

predator” rather than “predator”)

As an example of Lotka-Volterra equations, I defined two icons, one for the rate varlable as a
prey_change and one for a predator_t change. Table 1is a ﬁle for defining these user-defined icons.
One can load this file by choosing Utility’s submenu; ‘New Icons’. In the file, one must record
informations for new icons including its name, a file name containing its graphic form, a position in

the icon menu, and its prototype equation.

Table 1. Contents of a file for user-defined icons

prey prey.dib 800 0 840 40

(0.1*prey_population) - (0.001*prey _population*predator_population) !
predator predator.dib 850 0 890 40

(0.001*prey_population*predator, _population) - (0.1*predator -~ population) !

With user-defined icons in EGO, one can build a model within only two steps: create and
connect. A user-defined icon knows its own prototype equation. All things students must do is to
create and connect appropriate variables and to click one of the prototype variables that pops up

on connecting variables.

259

With the LEGO utility in EGO, we can replicate a prey-predator system, and connect them into

a whole system. Figure 2 is an example for using LEGO in EGO to build a double prey-predator

model. One need not care about formulating equations at all. Just create, connect, and select.

& Y
NN L

2 X

i

Bredatcml_chmqe l

Dredaiﬂl

Concluding Remarks

When we can construct a rich pool of user-defined icons, I believe that children can learn
system dynarhics modeling with fun. It seems that less than hundred user-defined icons will be
sufficient for teaching system dynamics modeling at K-12 schools. And they can learn how to
define variable equations after learning fundamental mechanism of system structures and having

enough interest in the system dynamics modeling.

Reference

M. Resnick, 1994, Turtles, Termites, and Traffic Jams, The MIT Press.

260

