Seamless Integration of System Dynamics into High School
Mathematics: Algebra, Calculus, Modeling Courses

Diana M. Fisher, Franklin HS, 5405 SE Woodward, Portland, OR USA
Ron Zaraza, Wilson HS, 1151 SW Vermont, Portland, OR USA

Introducing system dynamics concepts is very natural in mathematics. The reform
Calculus movement that has been in progress for ten years in the United States sets a useful
backdrop for introducing systems. The reform movement has as its fundamental precepts the use
of a four pronged approach to a conceptual understanding of Calculus and functions. To
understand functions one must view them symbolically, graphically, numerically, and verbally.
This is referred to as "the Rule of Four." Adding a fifth rule would provide a natural link to other
disciplines and real applications. The fifth rule would be to view functions from a system
dynamics perspective. This perspective is natural in Calculus. Functions can be viewed from
their characteristic behavior-over-time/frate-of-change patterns. The "Rule of Five" can be
implemented as early as Algebra L

The introduction is most easﬂy accomplished with the use of a motion detector, connectcd
to an analog to digital converter interfaced to a computer. The computer is also connected to an
overhead viewing system so the class can observe the activities. Students are asked to walk in
front of the motion detector slowly and steadily or quickly and steadily. The graph produced is
linear and a discussion centers around the characteristics of the motion that caused the graph to be
linear. Ttis noted, via a questioning strategy (so the students make the determination) that the slope
is dependent upon the speed. The connection between speed and slope is used as the foundation
concepts for the study of all other functions from Algebra I through Calculus. Additional exercises
are used to guide students to the obvious conclusion that, in order for a graph of motion to be non-
linear there must be some acceleration/deceleration. Students know this, intuitively, but

. experiences crystallizing this concept are not usually provided in math classes. Students in Algebra

I are then expected to interpret written explanations of movement into graphs, distance graphs into
velocity graphs, and distance graphs into written explanations. In Algebra II students are also
expected to continue this interpretation to include parabolic and oscillatory motion. Addmonally
they are expected to translate velocity graphs into corresponding distance graphs, velocity graphs
into written explanations of motion, and velocity graphs into acceleration graphs. In pre-calculus
classes the extensions include translation of acceleration graphs into corresponding velocity and/or
distance graphs. As simple as these experiences may seem most students have not had concrete
experiences in a math class, with the attendant vocabulary and reinforced connections that are so
1mportant to interpreting the equations and word problems that are found in the courses. The
exercises truly crystallize for the average student, the connection between slope and speed that is
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fundamental to understanding Calculus. The exercises begin with motion producing straight line
graphs and evolve to demonstrate first and second derivative concepts.

A vocabulary using a systems perspective can be developed using an intuitive set of
exercises that most students find easy to understand. Some of the vocabulary is introduced in the
motion detector activities. Using "characteristic behavior-over-time" in addition to "rate of change"
to describe the standard linear, quadratic, exponential, and periodic functions is reinforced
repeatedly. Using the motion detector as early experiences for students at each level allows
repeated reference to the motions and their interpretations on the graph.

Lessons follow that use the method of finite differences, a numerical view, to reinforce the
vocabulary introduced in the earlier motion exercises. Tables of values for linear, quadratic, and
exponential functions are studied to show that linear functions have first differences that are always
constant (first differences indicating velocity), quadratic functions have second differences that are
always constant (second differences indicating acceleration), and exponential functions have first
quotients that are always constant. Additional exercises are given where the function is not
specified but the student must determine, via analysis on the tabular output of the function, it's
characteristic behavior over time.

Finally, a modeling software, such as STELLA is introduced. With the vocabulary and
rate-of-change concepts previously emphasized it is not difficult to expand problems to include a
wider scope. The first set of lessons begin with problems that occur in most traditional math texts.
Most standard Algebra, Pre-Calculus, and Calculus texts contain "word" problems that are
suppose to provide students with applications of the functions they are studying. It is a simple task
to choose those problems that involve time as the independent variable and create a handout where
students design very simple STELLA models to solve those problems. Discussion with the class
about the standard structure of the diagrams can refer to the earlier motion exercises. Once the
standard diagrams are developed, students should be able to apply the correct diagram to the
ap'propriate‘ problem. This is not a very high level use of system dynamics, but is connects system
dynamics to the traditional curriculum smoothly, providing a leverage point for expanding analysis
of applications and functions via the system perspective in future exercises.

Students can, as a class exercise with the teacher, expand a simple problem. Again
vocabulary is important. Assuming students have created simple STELLA models of the problems
in the text, a problem of particular interest can be expanded/analyzed as an exercise with the entire
class. Students have the opportunity to apply both growth and decay componenfs to the same
problem (something that is noticeably absent in most textbook problems before Calculus level).
They can also combine functions within the same problem, applying for example, exponential
growth and linear decay. Additionally students can be given exercises to expand the simple
textbook problems into models on their own and explain their enhancements, thus providing a
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natural vehicle for including more written explanation in mathematics, as the US national math
standards propose. It seems to be easier for students to explain STELLA models they have
created, since the structure of the model is more closely connected to the application components
than traditional symbolic representations of problems.

Once students have become accustomed to representing problems generally presented in
their texts they become comfortable using lessons that introduce problems that would have been
beyond the scope of the course, via traditional symbolic, numeric, or graphical expressions. For
example, periodic functions are presented in most second year Algebra courses. The application
problems usually accompanying this study often rely on study of Ferris Wheels, oscillating
springs, and swings. While these are useful problems, there are other applications which may
appeal to students who do not have a particular interest in these physics concepts. One such
example is predator/prey interaction scenarios. Using a structured diagram approach, such as
provided by the STELLA software, students are able to design a model and study it , answering
the traditional questions about period, amplitude, including determining an appropriate symbolic
representation for the model. Beyond this, however, students may extend their study to include
potential problems that may arise in an ecosystemn and test scenarios for controlling problems that
may require legislation. Students could support certain legislation using experiments conducted on
their model to provide rationale for their approach. Hence, now there is a connection between
mathematics and the social sciences and/or law classes in the school, another objective of the US
national standards for mathematics instruction,

STELLA models demonstrating the connection between exponental, convergent
(Newton's Law of Cooling, as an example of convergent), and logistic structures illustrates
beautifully the similarities and differences between these three growth patters. System dynamics
and structured diagrams using STELLA illustrate elegantly the simplicity and connection between
related function types. This view is not afforded by other methods.

The use of differential equations can be expanded formally in the development of models in
a Calculus class. Generally differential equations is given very little time in most introductory
Calculus classes. Unfortunately, this delays or (for many) eliminates the study of some of the
most interesting applications in high school mathematics. Obviously, the study of models from the
perspective of differential equation analysis was meant for system dynamics study using STELLA.
As previously stated, providing experiences for students to study what may have been beyond their
grasp via the traditional views is very powerful. Students can experiment with SIR infection
models and Lotka-Volterra predator/prey models, among others, Designing and playing with
models using STELLA provide useful insights into problem structures that provide deeper
understanding when these topics are studied using more traditional methods later in a student's
educational career.
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In earlier classes (Algebra and Pre-Calculus) the vocabulary when studying functions can
focus on the flow equations as a description of the behavior of the system over time. The system
dynamics perspective, beginning as early as introductory Algebra classes, sets the foundation for
. those concepts that are at the core of Calculus. Starting with the motion detector and gradually

studying and building STELLA models support what is currently being taught in mathematics. A

course in modeling using a system dynamics approach is where the difference between what is

currently being taught in high school mathematics and what can be taught is dramatically different.

Students in system dynamics modeling classes have produced models and technical papers that are
~-a quantum leap above the traditional work of high school students in math in the United States.

<+ nee - The ultimate development of a system dynamics view of problems is in a systems modeling
course. Here students proceed through exercises, during the first half of the school year, that

- develop their ability to look at problems differently, to look at problems from varied disciplines, to
develop simple models from scratch, and explain them to others. During the second half of the
year students choose a partner with whom to work. They choose a problem they want to study.
With the help of the instructor they find a reference/expert who understands the problem they want
to model. Using the library, the Internet, various books, and various databases they try to collect
data about the problem. They design a model, often finding they do not understand the problem
well enough, or their expert cannot communicate effectively with them, or the data they found is
inadequate or insufficient. Almost half of the students find they need to change their model topic in
the first two weeks of data collection and early model construction. Once the groups have topics
that appear to be appropriate the students work to design a model that represents the structure of the
problem sufficiently and try to validate the results produced by the model. To validate their models
students may use theoretical information, or their expert, or the data they have collected, or, if all
else fails, a comparison of results that maich reasonable expected behavior. Students then write a
ten to twenty page technical paper explaining their model, how it works, what the graphs indicate,
how they validated their results, and what they conclude. These papers never fail to impress all
adults who have seen them, as they are far beyond the traditional expectations of students at high
school level. For the past two years there has been a systems modeling competition, called
SYM*BOWL, for high school students in Portland, Oregon. Students must explain their models
to a panel of judges who are expert modelers.

At Franklin High School in Portland, Oregon the number of students taking the systems
modeling class has increased from 11 t0 60 in the last 5 years. At Wilson High School, also in
Portland, the number has increased from a few students doing independent study to over 50 in the
same amount of time. Three additional high schools will be adding a SD modeling course next
year.

828




