i

Local Forecasting of Chaotic Time Series

A.K. Alpaslan, M. Sayar, M.C. Demirel, and A.R. Atilgan
Polymer Research Center, TUBITAK Advanced Polymeric Materials Research Center,
Department of Civil Engineering, Bogazici University, Bebek 80815 Istanbul, Turkey

Prologue
Measured time series are usually the basis for characterizing a dynamical system. In practical cases,
however, it is not possiblc to observe all relevant dynamical variables pertaining the system. The
most common case is limited to a scalar time evolution of a variable for a finite duration of time.
One of the most challenging endeavor is to predict the continuation of the time evolution. A finite-
dimensional lincar system produces a signal which is characterized by finite number of frequencies.
Based upon this fact, either in frequency or in time domain there are methods for time series
prediction. For nonlinear processes, however, these methods become inappropriate since a global
model cannot be applicd to the entire state space where the signal lives. Eckmann and Ruelle
(Eckmann and Ruelle 1985) suggested first the idea of finding the relation between the delay
coordinates of a point and the points appcar some time later in the state space. A competition was
also arranged (o fest the success of prediction algorithms proposed until 1993 (Gershenfeld and
Weigend 1993). Among those registered for the competition, two methods prove to be the most
successful (Sauer 1993; Wan 1993). One of which uscs a connectionist neural nctwork (Wan
1993) and the other utilizes the delay coordinate embedding based methodology (Sauer 1993)
based upon the Eckmann-Ruelle proposition. More recently, wavelets (Parlitz and Mayer-Kress’
1995) and genetic algorithms (Szpiro 1997) have also been su ggcested for nonlinear predictions.
Supposc that the time evolution of the system behavior is reconstructed in the state space
(Abarbanci, Brown et al. 1993). The forecasting problem may then be formulated as follows: n
different points on the attractor located in the state space arc known. These points are P(1), P(2),
.-, P(n). With respecet 1o a fixed reference frame a point is represented by m numbers, m being the
dimension of the state space. There are two questions: (i) Can one determine the point P(n+1), and
(i) il (i) is achieved, how far the consccutive points P(n+1), P(n+2), ..., P(n+n*) can bc found,

that is what is the maximum value for n*?

Model

We [irst postulate that the point P(n+1) can be found by using the time evolution information of
spatial neighbors of P(n) which arc located within a certain cut off distance. We next presume that
the succeeding pointin time  P(k; + 1) of cach neighboring point P(k;) can be determined by a
lincar combination of the preceding points of P(k; + 1). These points are P(k;), P(k; - 1), Pk - 2),
-y P(Kj- d + 1), where d is referred 1o as the model dimension. Here i can take valucs from I top

where p is the number of ncighbors that falls into the sphere whose center is at P(n) and radius is
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the cut off distance r. This scheme introduces a set of unknown interpolation coefficients Cy, Cs,
.--» C4. Therefore, the same interpolation scheme can be constructed for each neighboring point
P(k;) of P(n) with the same interpolation coefficients Ci, Cy, ..., Cy. This statement may be
formulated as

CiPk)+CoPki- 1) +...+ CyPki-d + 1) = P(ki + 1) 1)

where Cj=[cj €j2-- Cjm ]. Eq. 1 contains p number of equations and d x m number of
unknown coefficients ¢ jm, since j can take values from 1 to p and the dimension of the state space
is m. However, m different sets of d x m coefficients and m different equation sets are needed for
each component. Therefore, one can form a system of linear al gebraic equations in the form of A u
= b, where u denotes.the column vector consisting of the interpolation coefficients ¢ jm- Here A
and b contains the component values of the neighboring points. The dimension of A is (mxp)x
(m x d x m) and the dimensions of u and b are (m x d x m) x 1 and (mxp) x 1, respectively. The
linear system of interest usually turns out to be overdetermined. A solution can be found by the
singular value decomposition technique. Were the system to be underdeterminate due to a few
spatial neighbors satisfying (m x d x m) > (m x p), the minimum number of neighbors that makes
the system determinate would be collected by automatically enlarging the cut off distance. The
point P(n + 1) following the last point P(n) can then be calculated by the following equation

Pm+1D=C;PMm)+CoPn-1)+...+CyPn-d+1) 2)

The same scheme is followed to calculate P(n+2) that follows the last point which is now P(n+1).

We need to define an error between the predicted and the actual trajectory of the system so
as to monitor the accuracy of the prediction model within the range of locality assumption. Root-
mean-square (RMS) error, which is calculating the root mean square of the differences between the
predictéd and the actual data at all points, gives a single number about the error. Instead, we need
the evolution of the error along the prediction horizon. This is referred to as moving RMS error.
The error of this nature may be expressed as

k=i+1g/2
ei)= (Uﬂ—\;)/\/ Z [x (k) - X(k)?

k=i-lg2+1 ‘ (3)

where N is the number of predictions and 1, is the window of the RMS error. Herein x(k) and
(k) are the actual and predicted data, respectively.

A benchmark case
Complex signals was commonly assumed to be the output of a complicated system with a large
number of active degrees of freedom. However, realization of nonlinear systems with relatively
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small number of degrees of freedom, while deterministic in principle, can create output signals that
look complex and mimic stochastic signals, such as the Lorenz model (LLorenz 1963) which is

described by the following set of ordinary differential equations

X=-0Xx+0Yy y=-XZ+TX-Yy Z=-Xy-bz @

The parameters in Eq. 4 is most commonly selected to be o = 10, r =28, and b =8/3. For
generating the data, the Lorenz equations displayed in Eq. 4 are integrated for 3 x 10# time steps
with the step size of 5 x 10-3. The Bulirsch-Stoer method (Press, Teukolsky et al. 1992) is used to ’
obtain the time evolution of the parameters X, y, and z whose starting values are x(0) = y(0) = z(0)
= 10. The time-delayed embedding technique together with the false nearest neighbor technique is
used to reconstruct the state space using the convection amplitude, x.

For prediction, different initial points are collected as input. Five different time series for x
with different initial points, 16, 18, 20, 22, and 24 x 103 are prepared for prediction. Continuation
of the amplitude data is predicted for 10° time steps for each initial condition. Results are then
compared with the actual continuation with each initial condition which is calculated by integrating
the Lorenz equations with the Bulirsch-Stoer method further in time. The parameter set of the
algorithm are identical for all five runs. The model dimension d, which represents the number of
neighbors taken along the same trajectory of the point, is set to 3 and the radius of the sphere 1,
which controls the number of neighbors taken on the adjacent trajectories is set to 0.2. A
representative comparison study is placed in Figure la. The moving RMS error obtained by
averaging over five sets is displayed in Figure 1b. The results indicate that different starting points
contribute to the accumulation of error differently. However, the averaged error demonstrates that
the error start growing considerably after around 600 time steps, then fluctuates within an interval
about 200 steps. The later steps however, diverge considerably from the actual continuation. The
algorithm is coded in C. The calculations are performed on a SG Power Indigo workstation. A
CPU time of 22s is sufficient for each data set. '

Epilogue

Predictions follow the actual trajectory for all of the components for a certain time. The predicted
results then starts diverging from the actual one. This is observed whenever an orbit approaches to
an unstable fixed point of the system. Therein the sensitivity to the initial conditions is so critical
that the error accumulated by the prediction algorithm also grows exponentially. The predicted
trajectory gets away slightly from the true continuation first, and as it comes nearby the unstable
fixed point once more, this slight difference results in a shift to a completely different trajectory.
However, the predicted trajectory catches the actual continuation with a time lag, as the method
utilizes the state space neighbors for predictions. Though the success of the forecasting is
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comparable with those of Sauer and Wan (Sauer 1993; Wan 1993), the method presented herein is
much simpler and faster.
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Figure 1. Time series prediction for the displacement x from the Lorenz attractor. (a) In the top
figure, solid curve and dashed curve are the actual and the predicted time series, respectively. (b)
In the bottom figure, the moving RMS error of the prediction is displayed.
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