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ABSTRACT:Time—domain robustuess of control system is studied in
this paper .Badr’s algorithm is enhanced by using matrix perturbation theory
and convex polyhedron idea,so as to suil the needs of multiple—parameter vari-
ations of high—order system.With matrix trace as pcrforman:ccy criterion,a new
synthetical algorithm of robust contro! systems is prcsénted,an example based
on this algorithm is also given.
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L. Introduction » , S ,

Generally,there arc two methods on uncertain control systcni
rescarcli:adaptive control scheme and robust control scheme.The system bascd
on the former,while the parameters of controller vary with the parameters of
plant,has complicated structure and high cost;however the latter,adopting {ixed
controller,has  simple structure and low cost,and it is also easily
realized.Consequently,it causes more and more attentions.

The research interest concerning robust control system is generally classi-
fied into two perspectives:stability robustness and performance robustness.Sta-
bility robustness means that the system remains stable with_’systcm parameter
variations. The representative works on this respect arecompleted by Horisbeg-
er{1],Darision[2] and Yedavalli(3],etc.Performance robustness means that the
performance criterion remains efficient with barameter»variations of the system
JIn this respeet, Chang and Vinkler’s work is more representative.Though to-
bust control system has been of major interest for many years,more attention
are paid to the respect of aility robus‘tncss.Byl using the convex polyhedren
concept and optimum control theory,Badr[6] combined the two respects
ingeniously,and then a synthetical algor'ithm on robust system is raised. But it is
so  complicated in calculating high—order,multiplc—variable parsmeter
systems,thus it’s necessary to get improved.Toward this target,a new synthetical
algorithn on robust contro! systems is proposed in this paper
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2. Stability Robustness
2.1.Basic definitions and theorems

A linear time—invariant systcm is denoted as:

X=FO)Xx (1)
where: 1.) The set of 'parameter variations v is assumed to be polyhedron of
the form:

Ve (:I<v<u ucR") ()

tand u are given constant real vectors.
2.) F()isa multxple lmear function of paramctcr vcctor v,if we fix
other components of v. j (v) only-are linear functnons of ,
The vector number of convex polyhedrom is N = 2 ,wheru q is the numbu

of variable parameters,the corrcspondmg vectors are deﬁned as:
, O ‘@) ()

Vo eV
The corresponding state matrices are:
(‘—F(v Y, ie{l, 2 ,., N}
Lemma(2.1): For a linear control system defined by eqns.(1) and (2),if therc ex-
ists a real symmetic positive—definite matrix P,such that
PEOMY+FT 0P <0, 1€ {1, 2, ... N}
then system (1) is asymptotically stable(¥v€ V).

Definition2.1%: For 4 = (a,)eR""",if 4,20, i,y €1, 2, ., nhthen A is
named non-negative matrix( written as'A>0).

Lemma(2.2): For A,B& R" ,lf A < |4| < B,then any eigenvalue of matrix A
is less than the maximum eigenvalue_r of matrix B, that is

Al r

Proof: By the theory of matrices,we have, ; ‘

| 4™ |< 141", mefl, 2, | 3)
JFO<<A<B,then:

0g4d" <B" @)
Combine eqns.(3} and (4),we have ' ‘ -
| | <l4" <8
Morever,becanse |4 | < l ,l,
411, <1811,

According'tq the properties of L, norm

14ll, <1 141 1,
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Na <l lam Tl <), (5)

i - /m ) w1 /m i/m
la= 1" <l a1 <z,
When m—~co,we have
p{A)Y< p(4} < p(B)
Therefore
Al r

Let the numbers of variable entries of state matrices A and B be

respectively 4, and g,,then 2" %" sybsystems can be formed.The sets of

- system can bg} denotcd by
L | ,
X0 =4"%" +B U=, + 24" ¥ 8" U”

iefl, 2, .,2""") (6}
where 4 o is the asymptotically stable matrices of nxn norminal system.

Dcfmltlon (2.2):Let the disturbance matrix be ,
A4 =8 E, | | @
where E, are’ constant,describable matrices,in which the maximum entries are

1,while ﬂ are uncertain parameters.

Definition(2.3) Let A be n—order matrix,and
A ;= Lwhen A ?EI}

From definition 2.2) and (2. 3) apparently
A, = IE 5 |

l.
If 8= max§,, ie{l, 2,. .., 2“‘“’} then the following
i

theorem can be established.

‘Theorem (2.1):Let the sets of systems be defined by eqns.(6),if
sAZAAT qefl,2,.. . 20t

and P=P" > 0,then we have

MAx
Aw 12,25 %

maxi,. P@, +AA" —BG)+ @, + 24— G)P]
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< maxd__ PA, +sA-B"'G)+ @A, +s&=B"'G)" P

max
im1, 2., 3%%%

Where G is feedback gain matrix.

Proof: since s\ = AA(”, ie {1,2,...2%"%)
Therefore 4 + 8 — B‘”G; 4, +04"-8"¢
fel1,2 ...2"7")
Moreover,because P = PT > 0,then
P, +sA-B"'G)2PU,+04" -2 0) @®)
and: _ _ ,
| d, +or-B"6Y P, +04" —B"6)P )

According to Lemma(2.2}, we have

maxi, P, + 04" — B0+ U, + 04" =8 6) P

twl, 2, 2NN

< maximax[PU, +85—B @)+ U, +s0-8"'6) P

(m 1,220

Theorem (2.2):if there exists a ,r-eal'symmetric pésifiﬁe—ﬂcﬁnite matrixk
P,such that ,
P(A, +3A —B° G}+(A +35 —87G)"P < 0ie(l, z L2} a0

then system X = (An +aA)X“’+B U’( K is asymptotically stable.

Corollary @.1)%
(4, +8DN—B ey" P+rd, +8l— B6) < maxi

mat ““max {(Al)
te1,2,.2% fo1,2,.2%

+sr5-B U6 P+PU,+A-BG)

( Proofsee [7].)

Theorem (2.3):Assuming that P is a real symmatric positive—difinite
matrix,such that o
i - T
7, =h_ [PU, +s25-B G+, +sA - ") P

ie {1,2,...2"}
ien 7, (plare continuous, convex and differentiable. (Proof see [70).
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Definition (2.4}:A function g(p)is
g(ay= max {n (p); (11}

wmii.at
B PR

From theorem (2.3),3(p} has the properties of 7.

Derinition (2.5): ,
. , , . ;
Aig) = maxa, oo PFyEN+F vis)P) : , (12}
Ye¥i(
2.2 Caculating Programme
According to the definitions a~d theerems given above,he calculating pro-

a
-

gramme of stability robustness is cznoted as Fi

.12t W{si=n

s

Search P,g{P)->umin

N

trint :&max

Fig.1.

The convegence property of tae above-algorithm is guaranted by the foi-
lowing theorem.

-faq .This series

-y

Theorem(2.4): The above ilgorithm gives a series

are either definite or indefizite.but there’s always a limit limaq

G- @

=am.It is impossible for & > a_, that satisfies §F(v}+ FT(v)f’

<0B=PF">0,vevVE)

pt
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{Proof see [11.}

3. Performance Robustness
Let the sets of system be defined as eqas.(6),their weighting performance
index criterion is
N N
J=YCJ.=YC.T8) 13}

te | IR

Whare,Ci are weightmv factor. SL are sub]ec* to Lvapunov s Eans.

" -2'""e)'s, +5,4"-8"6r+0+6 "RG =10

then the performance index criterion has its minimum value.

Theorem (3.1} Let the sets of systems be imned by eqns.i6) and the
performance index critgrion be defined by zans.(13; [f and only if there
axists an initial feedback matrix G. ,w ich is subject to R | il 4 “

@) . :
—~B37G,.<0 ,then there also exis:s an optimal value G

such that J{G) is minimized.(Proof see [6)

4, Robustness Synthet‘cél Algorithm
Combine the two aloomhms above, then a ovathetxcal robustness algoritam
is founded.This algorithm not only gives the laroest stability region.but mini-
_’mlzes the performance index criterion as well. Detailed algorithm see Fig.2.
5. Examples

Consider the {ollowing system
Y=4AX + BU

where:

Ad=| 1176 —3538% ¢

[ 1356 0.2232 ai [0.11277
| 1.886 |
0 1 0 [
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Jind G.such that E,_m (A(vn}—-B(va}G}<ﬂ

jind P=2" >0, PeQ.such that

1

A“'.

“a

(P — BOYG + [AO)= BGIG, P} <0

iind aq,sucf: that h(aq}=i}

t

gnd P, suech tha: g(Pr—min Pl

i
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If using Badr’s algorithm, it needs calculating 4096 sub-system
states.However.according to the algorithm proposed in this paper,it only needs

calculating 3 sub—system ststes.Caiculating results are shown in Table 1 and 2.

Tabie 1 Badr algorithm

Times| ¢ | ¢ e x10°] J@G) | AT G
1 | .2 0.0125| 3.7003 | 13.0917| 2.219 | 80853 | .10492| .3163
2 | 61000625 3.5545 | 129046 0.758 | 70812 | .10481 | .3162
30 .8 19.00312] 35219 | 128531 0.356 | 70827 | .10490 | .3162

Table 2 improved Algorithm

Times | ¢, | €, o x10°| JG) | &t% G
1 |2 92 1.1974 | 18.3834 | 47.44 | 1.0741 | .15364 | .4740
2 |6 01 2.8573 | 15.7117 | 23.07 |0.8911 | .12854 | .4062
1 |3 |0.05 2.7845 | 14.0931 | 10.04 |0.8742 | 12456 | .4032
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6. Conciusions

From the calculating results given above,the improved synthetical
algorithm proposed is simple and expiicit.Thevcaicuiating work is [ar less than
that of Badr’s algorithm,while the time cost is 1/ 7 of the latter.It particularly
fits high~order systems with multiple parameter variations.though it exists a lit-
tle conservatism.
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