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ABSTRACT

Energy dissipative systems are considered through a general approach. The
" one direction non—steadv state equation for mass, heat and momentum transport
shows that the energy used by the system could be cons1dered through an
"energy dissipation function", comparable to the "wave function" used in Quantum
Mechanics. A complex time scale is proposed. This permits to consider the
fluctuations as being in a time scale which is different from our classical one.
The non commutation of operators of the basic equation introduces quantlflcatlon
which supports the use of finite different equations instead of a differential
equation. A discretized Chaotic Process is proposed as a model for actual
systems. The example of a fluidized bed shows that quantum considerations
through a ground dynamic state and an excited state could support the above
proposal which is in agreement. with the actual - qualitative ‘behaviour. . -The
Chaotic Process can be put in agreement with the thermodynamics based principle
when comparing the minimum energy dissipation of the actual system.

INTRODUCTION

Dissipative systems show the possibility of fluctuations and turbulent
behaviors. Energy dissipation is not sufficient but it is a necessary input:
systems are not workable without energy.

Chaos is recognized as possibly being at the border of classical mechanics
and quantum mechanics (BERRY, 1987). For example atoms coupled to their field
can be considered as dissipative systems in the same way as classical energy
dissipative systems such as chemical reactions (PRIGOGINE, 1988). Chaos is

identified in quantum mechanics systems such as atoms of hydrogen (DELANDE,
1989)

Time could be considered in different scales: thermodynamic, internal,
biological; it can be also considered as an operator (PRIGOGINE, 1980, 1988).
Whether time is reversible or not is now higly questionned (COVENEY,1989) and
a turbulent time concept has emerged (MULLIN 1989).

Many studies were conducted on complex energy dissipative systems but
few attempts, except for chemical reactions, were made in the field of chemical
engineering. This paper is a follow up of some dispersed studies on unit
operations such as sieve plates (MORA, 1976, 1978; BES, 1982,1985), liquid-liquid -
extraction column ( BES, 1986) or fluidized beds (CHEBHOUNI, 1985).

These systems such as fluidized beds show very complex behaviors but the
basic equations are still unable to follow this complexity. Empirical equations
are generally used by adding identified parameters from experiments. Design and
scaling up are possible but only in narrow ranges of operating parameters. One
of the problems for these systems is still to get models that are able to
represent qualitatively the overall complex behaviour and particularly the
possibilities of several regimes by means of simple general equations.

ENERGY DISSIPATION EQUATION
A general one direction non-steady state equation for the three basic
transport phenomena, i.e, mass, heat and momentum is given by:
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where a? is the flux density multiplied by the driving force. For the particular
case of linearity or simple non linear models, a® is the entropy source. This
varies in the same way as the available energy which dissipates into heat due
to 1rre’ye'r81b1e processes.

Li

a" can be called 'D1sszpat1ve Activity Ind1cator" (BES, 1982) but in this
paper naming it as "Energy Dissipation Function" seems more appropriate.

FEIGENBAUM PROCESS
A simplified form of equation (1) is :

k% (a,-a) @
dt

This equation can be split into two equations:

da ; : o :
K—= a.l_a . : (3)
dt
da o ,
K— = 82 i ; ! (4)
dt
The corresponding finite difference equations are:
a(ttl) = a,T+ a(1-T) ; ; , (5)
a(t+l) = a + a,T : (6)

T is linked to the time step for discretization.

Equations (4) and (5) define two straight lines, which can be used in an
alogorithm to define a chaotic process (Figure 2).

Each of the two branches may be representative of two dynamlc states of
the system.

The 1ncreasmg value of "a" is an 'excited state", the decreasing value
belng the "ground dynamic state". '

OPERATORS ;
In equation (2) the state of the system is defined by "a". This is obtained
from:
da
a=a -K— (7
dt

Two operators act on "a":

A

S such that S(a) a‘;

da (8)
_K ——
. . dt
The resulting operator is H = S + K (9)
The physical state given by "a" is an eigen function of f, the eigen value
being 1.
It is possible to show tlgaﬂt 'tthcommutato'r is not zero:
C,=KS - SK = a, (10)

X such that I?(a)
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"a " represents the experimental cause of fluctuations as a, 2 is the external

energy supplied to the system.
Equations (3) and(4) represent two operators, i.e, one for each of the two
branches, the commutators is:
c, = a,r?

were a2T2 is the parameter governing the chaotic process.

: Quantum mechanics justifies the Heisenberg’s uncertainty principle from the
non commutation of two operators of the Schrodinger equation. Following this
idea we may assume that different equations considering two dynamic distinct
states (as equation (5) and (6)) may provide a mathematical representatlon of
fluctuating physical systems. The "quanta" could be a_, or azT .

TIME SCALES REUELS

Different time scales have been already proposed in order to take into
account complex systems in many scientific fields: thermodynamics, biology,
hydrodynamics, quantum physics, astronomy, biology, chemistry, chemical
engineering, etc... ‘

a) Thermodynamic time, internal time ’

This may be defined as : dt’= s dt or dt’ = a dt. In this case the linear
equation (2) becomes a quadratic one fully comparable to the logistic function
classically used as illustration of chaotic behavmrs.

b) Universal Time

A universal time may be defined through a number of events: number of
earth revolution, number of quartz vibration, number of atomic disintegration,
etc... This latter definition is used to verify the Theory of Relativity.

c) Complex Time

Complex time is used in astrophysics based on two components, the real
and imaginary parts of a complex number.

d) Turbulent Time

The concept of turbulent time is now proposed in order to take into
account the complexity of hydrodynamic turbulent systems.

e) Continuous and discretized time ‘

Time evolution of "a" can be calculated from the analytical integration of
equation (2) or from computatlon of an associated difference equation for
different steps of time. The set of numerical values of "a" is a Poincare map. If
one wants to get the same results from the two ways, dlfferent time scales, dt’
and dt should be used. One condltlon for getting the same values of "a" at the
same time is:

dt" = k dt + Sw
age "t" will be such that

= N kdt + N6w = N" dt"

showing two components, one directly linked to a usual time step (dt), the other
linked to a number (Nw). The two components suggest that time be considered
as a complex function.
‘ f) Imaginary time
The basic equation of quantum mechanics is derived from equations of type

(1).
-k e
2‘m{9z2 at

(11)



System Dynamics '91 Page 369

¢ is the wave function. Complex notation has been introduced in order to
get periodic solutions as equation (1) is unable to do that.

Periodic regimes are now recognized as first steps leading to chaos. It
seems reasonable to consider equations of type (11) as being the starting point
to seek more realistic models.

COMPLEX ENERGY DISSIPATION FUNCTION

The "Energy dissipation function” may be compared to the "Wave Function"
ifl we use a complex time scale: dt = i dti, so that

Kaa o3
- — ] — (12)
Ea at;
In this case "a" should be a complex:
a=at+tiB (13)
The module is
= o + B¢ (14)
and
a+ a¥ = gq (15)

For linear basic transport phenomena: mass, heat and momentum, aa* will
be the entropy source: o. .

TIME RELATIVITY
Fluctuating or turbulent system are simply characterlzed by time averaged
values, i.e, temperature, velocity, composition, so that:

4= a+a’ ’ (16)

One of the input parameters is the time averaged value of the energy
provided to the system: & This parameter is easily obtainable from experiments.
e includes energy required to steady state and fluctuations, given by:

ol
N
+
v}

However this equality is not true for an instantaneous value as:

€z (a+a)? (18)

In order to get similar equality as equation (17), we may use two time
scales so that ‘

32 A% = BAtZ_a?A L2 (19)

=2 r2 ’
or 2 a0% _atf1.2 (20)
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or  At'? = Atz{l‘a ] (21)
T =2 , o
So that
2
At = At |1-2 (22)
-2

At’ is a thermodynamic or internal time.
Equation (22) should be compared to the well known Time Relativistic
equation

=t 1. (23)

From equation (22) it appears that the additional energy dissipated through
fluctuations modifies the internal time scale in the same manner as velocity does
it to moving system. A consequence is: "fluctuations decrease the internal time".

COMPLEX THERMODYNAMIC TIME ; o
Equation (19) is the module of a complex time:

72402+ a2At2 - BA L2 (24)

ZZ arz
or At? - 2 AO%. S At? (25)

e’ : e

so that
At? = AF. A&x (26)
with AZ = At'+ i a’ At (27)
7

Coming back to the introduction of "a" as a complex function (equation 13),
.we can identify: )
a as the averaged value of a:a
B3 as the fluctuation of a“
so that

a = a+ia’ (28)

Consequently we may consider that a turbulent system as operating in two
different time scales: ‘
a) our time scale for the averaged value,
b) its own internal time scale for fluctuations.
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According to this development, the non-steady state classical diffusion type
model seems relevant for the averaged values while "Schrédinger"” type equations
would be relevant for fluctuations.

The classical modelling and the quantum modelling could be considered as
coexisting at the same time through two time scales. As a result of this, we may
consider that chaotic systems can run their course in a time scale which we are
not able to synchronize with our usual time scale. The difficulties to understand
the behaviour of these systems may derive from this particularity. :

The signal giving the dissipation versus time is a "broken" curve. This
could be characterized by the number of minima and maxima, i.e, smgu]ar points,
which is one of the various means for measuring the degree of comp]eXJty" of
the "fo]ded " curve. This leads to the concept of "fractal”, “or "geometric
entropy". Equation 19 glves in fact the module of a vector Whl(‘h is one element
of the broken curve that is directly derived from experimental curves (Fig. 1).

FLUIDIZED BED ‘
The basic phenomena in a f1u1d1zed bed correspond to a solid particle
maintained in a rising flow (gas for example). The bed (1 to 20 m height and 0.1

to 2 m diameter) could be composed of sand, glass bead, pellets of catalyst ete.
‘The basic equation comes from fluid mechanics:

m— = K(V ’—V)+mg : ' T (29)
: dt ' ‘
This can be l’nOdlf]ed as follows, using the minimum velocity for fluldlzatlon‘
dv
K— = (V-v) : (30)
- dt

as the energy supplied to the bed by -the fluid rises, the klnetlc energy of
particles rises up to a certain level, then the particles falls and rises and falls
again etc... Kinetic and potential energies acquired from the fluid when rising are
transformed into heat by shocks with other particles and when falling. The
klnetlc energy equation may be written as:
da , R . -
KF— = (ao—a) : (31)
‘ dt : ' -

It is not possible to derive experimentally and theoretically from models,
or equations the exact paths and states of one particle due to very complex
interactions between particles and fluid. It is easier to consider two states'

State "one™  the particle is moving up.
State "two™  the particle is moving down (falling).

The steady state: hydrodynamic equilibrium, i.e, a strictly non moving
particle sustained with a zero velocity in the moving fluid, does not have any
meanmg 1n a fluidized bed. The concept of two dynamic states is more realistic.
State "one" is the excited state. Each of the two states may represent a branch
of Chaotic Processes defined in equations (5) and (6).

Thus, it is possible to get a very simple model for the actual fluctuatlng
with several possibilities depending on the value of "a": i.e, the energy supplied
to the bed. The various regimes are those of the Chaotlc process. These can be
put qualitatively in agreement with the actual observed regimes. Each of these
regimes corresponds to a different energy excitation state: i.e, vaer of "e
through the fluid flow rate supplied to the equipment. '

The main characteristic of a fluidized bed is given by the curve correlating
pressure drop versus the liquid flow rate. This displays a flat part: fluidization
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in between two rising parts: fixed bed an transportation (Fig. 3). These two
extreme branches may be compared to the branches of the computerized Choatic
Process (Fig. 2). _

_Following this fact, "Fluidization” can be presented as a mixing, along
time, of two well defined dynamic states represented by classical equations.
Fluidization is a succession of transitions between the two states. One transition
accumulates energy while the other dissipates this energy into heat. This may be
compared to energy excitation of atoms or molecules.-

The fluidization characteristic curve may be transformed into an energy
curve showing that fluidization corresponds to a minimum of energy dissipation
(Figure 4) in agreement with the "Curie Prigogine" principle. Following this
principle, a physical system behaves such that it dlss1pates a minimum of energy
per unit of time and unit of volume.

- It is possible to show that the numerical Chaotic Process corresponds to
a minimum of the average value of "a" i.e. the steady state corresponding to
convergence is for a higher value of "a" than the computer time averaged value.
The fluctuating process could be considered as "natural”, for actual systems.

CONCLUSION : ‘

A simple model is proposed in order to take into account, at least
qualitatively, the complex behavior of turbulent dissipative systems. In this view,
a Numerical Chaotic Process is assumed to be a means to find appropriate models.
This paper is an attempt to Justlfy this assumption. Strong analogies exist with
the basic equations of Quantum Mechanics leading to analogy with the Theory of
Relativity of time.

Some of these analogies may be partly justified by the behaviors of some
widely used classical engineering systems, such as fluidized beds.

From the proposed model it appears. that one of the difficulties for
appraising turbulent systems may be that they run their course in a "complex"
time scale.  One component of this "complex" time. scale built from a chaotic
process is for the time being impossible to synchronize with our usual time scale.

The time relativity seems to be in agreement with our common sense:
systems under fluctuant energy stress age faster than the same system under
stabilized stress.

The problem now is to find the relevance of this kind of modelling when
quantitatively compared with actual systems and how this model can be
effectively used to go further in comprehending the turbulent systems?

NOTATIONS :
a d1351pat1ve activity Indlcator, G volumetric flow rate of the
- (J/s mHY : fludizing fluid (m%/s)
a’ turbulent component of a k constant: of ‘the Schrodinger
a time averaged value of a ; . equation (unit defined by the
a, a for external system equation) _ _
a,; component 1 of a k’ drag coefficient (kg/s)
a, component 2 of a K coefficient (s)
aX conjugate of a K operator (=)
C, commutator (=) k, time coefficient (-)
c velocity of light in wvacuum m mass (kg)
(m/s) n number (-)
e ener§y supplied to the system P = pressure drop (P,)
- (J/m°s s entropy source (J/K m3/s)
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t time (s) Vg fluid velocity
t’ time (s) Z position {-)
t" time (s) w constant (s)
T dimensionless time (-) 8 time (s) (m/s)
v velocity (m/s) @ wave function (~)
\'% fluid useful velocity for
fluidization (m/s)
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Thermodynamlc Complex Time
a: signal from a datalogger or from a computerlzed chaotlc process
(datalogger or computer time scale)
b: signal to be used for the generation of the internal time’ scale
c: transformation of the computer time scale into an internal time

scale.

Three events (fluctuatlons) occur in the usual time scale (t), flgure
(a), while four events occur in the internal time scale (t ), figure (c)

b voa(t+1)

Chaotic Process
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FIGURE 3: Fluidization Characteristic curve :
Pressure drop versus fluid volumetric flow rate or velomty
A: fixed bed, B: Fluidization, C: Transportation :
1: Homogeneous fluidisation

\ E (J/s)

o

FIGURE 4: Energy dissipation curve for a fluidized bed
Mechanical Energy dissipated into heat versus f1u1d flow rate
1: minimum of fluidization 2: actual energy comsunption
3: hypothetical energy consumption in fixed bed regime
4: with the same energy consumption the fluidized bed allows a
higher flow rate passing through than a fixed bed: G’ instead of G






