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ABSTRACT

Forecasting for complex nonlinear systems has proven to be elusive. Investi-
gators have assumed the causes to be too little data and overly-simplified
models. Recent studies in climatology reveal that nonlinear systems behave

in ways quite different from the linear or static systems of traditional
science and engineering. The behavior of nonlinear systems can be cyclical

or essentially stochastic and usually is a mixture of both. New techniques,
such as "attractors," are being devised to facilitate analysis. Methodologies
must be applied with due consideration to the structure of the system under
investigation. : '

INTRODUCTION

Currently, System Dynamics is a methodology of broad application, in that it
competes with economics, some social sciences, and some parts. of management
science. Practitioners of these disciplines, whether in the academic world,
industry, or government, usually have chosen to retain their traditional
methods of analysis (Leontief 1982). 1In fact, a whole new generation of econ-
omists has been trained in techniques that now should be considered archaic.
This is due only in part to the usual conservatism of all scholars. The bur-
den of proof still rests with the System Dynamics community, which has the
responsibility to deliver quantitatively better models and forecasts to the
customers.,

My own observation is that social and economic systems exhibit pronounced
dynamical behavior, as well as the stochastic component acknowledged by all.
This dynamical behavior, however, is precisely what has so far prevented
System Dynamics practitioners from producing models significantly better than
the competition. The model components, nonlinear differential equations, are
more appropriate than the usual static equilibrium techniques. What has been
lacking is an effective strategy for constructing the models,

The direct application of integrating initial value problems or even the
tuning by multiple regression (least-squares adjustment of parameters and
initial conditions) will not suffice for any but the simplest nonlinear
systems. These techniques serve adequately for small linear systems or near
linear ones such as orbits and ballistic trajectories. Much more analysis
must be done for the subject areas of System Dynamics. For one thing, the
data are much more noisy and less precise than in physical science and engi-
neering. Even more critical is that the solutions of these equations are not
linearizable to a degree sufficient for direct and easy model building.

Mathematicians have made steady, but slow and very painful progress on non-
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linear dynamics since the days of Poincare (Hirsch 1984). Their results,
unfortunately, are not usually intelligible to practitioners such as scien~
tists, engineers, and economists or even mathematicians with other specialties
and are less than adequate for model building and verification. The insights
of the mathematicians can be combined with the experiences of scientists and
computer experimenters to provide a basic strategy for building better System
Dynamics models. For want of a name, I have called this ad hoc synthesis

"The Theory of Predictability." - T

PHYSICAL SYSTEMS: THE MEDIUM FOR INTUITION

Certain dynamic systems are difficult or almost impossible to model even with
today's large~scale computers. A rigorous mathematical explanation of this is
not feasible and perhaps not possible. From an intuitive or physical view-
point though, this is easy to understand. To maintain a complicated structure
something has to have considerable rigidity. Sculptors like to use materials
such as wood, stone, metal, glass, and ceramics. Fluids, be they liquids or
gases, do not hold much shape. The interactions in most dynamical systems are
fairly weak. For example, the orbits of the planets are almost independent of
- each other, especially if one limits one's observations to a short time
period. The mechanics of fluids is impossibly complicated because they so
easily break down into eddies. At small scales structure is replaced by be-~
havior that is akin to randomness.

As interactions grow stronger they eventually become constraints. Constraints
reduce the dynamical complexity of a problem, replacing it with the sort of
fixed structure one can have in a rigid body. Rigid bodies and very simple
systems can be modeled very nicely by traditional methods: geometry and dif-
ferential equations (Luenberger 1979). What is sufficiently unstructured and
disordered can be modeled by statistical methods. In some cases the tools of -
classical analysis such as integral transforms, special functions and linear
systems allow the work to be done without benefit of numerical analysis or
computers,

Figure 1: The Hierarchy of Dynamical Systems

Type Constraints Type of System
Zero Absolute Rigid body
I Analytic integrals Integrable dynamic
11 Approximate analytic integrals " Amenable to perturbation theory
III Embedded structure ‘ Complex dynamic
v No structure Turbulent/stochastic

The hierarchy of dynamical systems (See Figure 1) is well established for
Types Zero and I, which are largely mathematical ideals, but useful approxi-
mations for many purposes in science and engineering. Types 1II and I1I1I can be
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approached with numerous analytic or numerical techniques. Complex dynamical
systems represent a transition between Types Zero, I, and II behavior and
random behavior. The same system can demonstrate these extremes, It may have
a nice, stable periodic solution and chaotic transitions to other stable peri-
odic solutions. It may also have non-stable periodic solutions. All these
occur in various special cases of the restricted three-body problem, a favor-
ite topic of dynamical astronomers (Szebehely 1967).,

Many practical problems fall into this category of complex systems. Weather
prediction and climatology, econometric modeling, and mathematical ecology

all share in common some general qualitative behavior. Until now these prob-
lems have defied scientific analysis and led some people to the conclusion
that this always would be the case. High-speed digital computers, which have
become incredibly powerful, seemed to offer a direct way to cope with complex~
ity. A dissenting voice, the mathematician Garrett Birkoff (1975), pointed
out that any problem can grow in complexity beyond the limits of physically
achievable computing systems. This Malthus of mathematical modeling called
his principle "the combinatorial explosion." In practice the properties of
dynamical systems usually prevent this from ever being a problem. The dis-
integration of structure in complex systems, often called "turbulence" from
the fluid mechanics example, puts a much more severe limit on the capabilities
of modeling and forecasting than does Birkoff's principle, which is basically
geometric and static in nature (Sugarman and Wallich 1983). Turbulence may be
said to be the dynamical limit to modeling. At the other extreme image proc-
essing and language translation are areas that are characterized by sheer
quantities of data and are quite amenable to sheer computing power. Basi-~
cally, they are Type Zero systems with much detail.

Some scientists and economists have come to the conclusion that complex
systems cannot be modeled, let alone predicted. This would leave us, with all
our highly developed data processing technology, little better off than the
ancients, who at least had their astrology (maybe it didn't work, but they
believed it did). The real problem can be summarized in the aphorism, "He who
computes much, thinks little." 1In the past this has been interpreted to mean
that the problem at hand could be solved through the rigors of classical anal-
ysis. What this implies for complex systems is that the structure must be
identified in the system before one attempts to do any serious modeling., One
cannot throw together an enormous model, even if one knows all the basic
interactions from some physical principles and makes no errors (both are rare
occurrences), and expect it to work.

Let's consider, for a moment, how turbulent behavior prevents the application
of the stock tools of the computer modeler. On a global scale, what is known
as "turbulence" is produced at the local scale by the divergence of nearby
trajectories. What this implies is that small changes in the initial condi-
tions can produce very large changes in the state. The usually useful state-
transition matrix does not produce a satisfactory description of the behavior
of the system no matter how small the variations in the initial conditions may
be chosen. Another way to put this is that the system cannot be linearized
even very locally in either time or state space. There is no nice trick, such
as one sees in the literature for solving very specific problems. What is
needed is a strategy instead of a recipe, and that is what we shall describe,
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PREDICTABILITY

In addition to turbulence, there also is "random" behavior. Traditionally,
random behavior has been thought of as "noise," or rather unmodeled effects.
Actually, the quality of being random is something that cannot be determined
mathematically or empirically (Kac 1983, 1984). Nothing is completely deter-
ministic either., The case is that every dynamical system has some inherent
degree of predictability of state between absolute certainty and white noise.
From this observation follows the "obvious" conclusion that the first part of
a scientific investigation should be to determine the predictability of the
variables. Model makers should first attempt to define the most stable or
predictable variables, not necessarily ones identical to the measurables, but
functions of them. An optimal model would concentrate the largest amount of
predictability into the smallest number of variables. In the traditional
physical sciences this now seems God-given. It was not always so. Ancient
civilizations never developed modeling beyond geometry and counting (Type Zero
dynamical systems). Western Civilization added dynamical systems of Types I
and II, with the help of calculus and differential equations, and later Type
IV with probability and statistics., Quantum mechanics is a Type IV system,
not a mystical one.

System Dynamics (and its cousin, fluid mechanics) dominate the still thinly
explored region of Type III. "The Theory of Predictability" presented here

is largely a collection of generalizations and ad hoc procedures., This is not
so bad in that the methods can be used by eng1neef§7_5001a1 scientists and
M.B,A.s without enduring years of (additional) graduate study.

Rigorous mathematical analysis has done little for Type III systems and not
because any effort has been spared (Hirsch 1984). But mathematics is primar-
ily the use of exact symmetries as a labor-saving device. Statistical anal-
ysis of Type IV systems makes use of the symmetries arising from the appli-
cations of 1limit processes (infinite numbers of state variables or parame-
ters). Complex dynamic systems are a transition type least amenable to math-
ematical analysis because there are no exact symmetries to exploit and usu-
ally too few approximate symmetries. Mathematical concepts as novel as
probability in its day may be devised in the future. Meanwhile, scientists,
engineers and modelers must struggle with ad hoc methods and trial and error
to solve practical problems and to provide e enough special cases to suggest
new concepts to mathematicians,

A System Dynamics model, among other things, may be summarized in vector
notation by

ax/de = £fx(t);t], Y

where X is a vector of state variables and t the time. In most serious models
the components of £ are nonlinear functions of X; t may be absent or occur as
a linear or nonlinear variable, where its presence is used to indicate the
influence of exogenous effects such as astronomical or climatic systems,

Solvable examples of (1) are the exception rather than the rule. Perturbation
techniques sometimes can extend these ideal cases for application to actual
data reduction and analysis problems. Celestial mechanics is the classic
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example,
AN ARCHETYPAL SYSTEM

The literature of dynamic systems and differential equations is replete with
specific examples of the application of "powerful techniques" for solution.
Simple problems can be reduced to evaluating an integral (analytic quadrature)
and then finding the inverse of that function. Power series methods are a
variation of this. The concept is simple, but the implementation is usually
complicated and laborious. Few ever master even a portion of the literature
of special functions such as Bessel functions and elliptic functions.

A few coupled nonlinear systems can be solved by separation of variables tech-
niques. Problems in mechanics often can be expressed by a Hamilton-Jacobi
partial differential equation, of which about a dozen examples are known of
separable problems. An explicit solution is obtained by solving several
"simple" problems of analytic integration and function inversion.,

Perturbation methods sometimes can be applied to problems dominated by solv-
able systems. Considerable progress has been made in extending the appli-
cations beyond simple methods of averaging, but the subject, like special
functions, is intricate enough to constitute a specialty in itself. Most
practitioners are satisfied to resort to the computer and run off a few cal-
culations with a good single-step numerical integrator in the span of a few
minutes. By contrast, Delaunay took 20 years to derive his theory of the
moon's motion and, though often applauded, it has never been used.

The problem with all the analytic and perturbation methods is that they depend
on symmetries that do not exist in complex systems. The trajectories (i.e.,
solutions) are knotted and twisted and tangled so badly that they cannot be
sorted out by any simple process. This description may recall the legend of
the Gordian knot. Alexander the Great, finding the knot impossible to undo,
simply cut it. To preview our conclusions, that essentially is what is
recommended here. What will follow will be suggestions for surgery as op-
posed to blind hacking,

Perhaps the best archetypal system for system dynamics is the Lorenz equa-
tions. This is a system of three simultaneous equations (Hirsch 1984;
Sugarman and Wallich 1983)

dx/dt = - 10x + 10y
dy/dt = 28x - y - xz (2)
dz/dt = - 8z2/3 + xy

where we let X = (x,y,z)T. The first equation is linear and the rest have one
simple nonlinear term which is quadratic. These equations were discovered, so
to speak, during some pioneering experiments using computers to integrate nu-

merically a drastically simplified problem in fluid mechanics.

Analysis is often complicated, but not very "powerful." The first thing one
can attempt is to find equilibrium points, which are those values T where
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() =0 (3
so that
dx/dt = 0 (4)

for x = r. Close to such points some information can be obtained about the
behavior of the solutions x(t) by linearizing (1). The process, of course, is
Taylor's Theorem for several variables ‘

ax/dt = J(£)(x-r) + 0(x-1)°, (5)

where J is the Jacobian matrix of partial derivatives of f and 0 a common
(often British) notation for the higher-order error terms. By ignoring the
error terms in (5), which usually is a valid procedure for some neighborhood
of r, the behavior of the system there may be deduced by computing the eigen-
values of the Jacobian matrix J (Luenberger 1979). The system (5) is approxi=-
mated thereby by a linear system with constant coefficients. ‘

The equilibrium points for the Lorenz system are easy to find. From the first
equation in (2) one concludes X = y and the evaluation follows easily that

5 = (0,0,0)" |
r, = (6/2, &/2, 27)" (6
£, = (-6/2, -&/Z, 27)".

Computing the Jacobian matrix is straightforward:
=10 10 0
J(x) = 28~z -1 -x (7
y x -8/3} .
The eigenvalues of J[i0,0,0)?] are easy to find, since the characteristic
polynomial can be partly factored; they are all real: -8/3, 11.8275..., and
-22.,8275..++ The large positive value indicates that the origin is not a
stable point and that the trajectory will soon depart the region.
Unexpected symmetry is revealed by analysis of the two other equilibrium
points. Even though the Jacobian matrices are different, they have identical
characteristic polynomials

P(s) = s3 + 4152/3 + 304s/3 + 1440, (8)

The polynomial P(s) has one real and two conjugate complex roots, which are
approximately

(]
1]

“13.85450 e

@
i
1]

0.09395,.. + 10.1945,..] )
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e, = 0.09395... - 10.1945...], (2

where j is used for the imaginary unit (32 = ~1), The small, positive real
parts of (9) imply that the trajectory will gradually spiral away from these
equilibrium points. This analysis does not tell much and it cannot, since it
is "local" in nature. Useful global analysis is more the exception than the
rule in nonlinear systems,

Numerical studies have revealed that the trajectory can jump back and forth
between conditions of oscillation about the equilibrium points in a rather
unpredictable fashion (Sugarman and Wallich 1983)., Such behavior has been
observed in System Dynamics models and been viewed by some (Kalman 1980) as
indicating that the approach somehow is not valid. Proponents of System
Dynamics have argued that the models show qualitative behavior similar to what
actually happens and therefore are superior to traditional econometric models
(Forrester 1978).

In some ways the debate is another of "oranges vs. apples." Econometric
models are locally valid (in time and state space) and system dynamics models
are emulators, i.e., they perform like the actual system but cannot be used
for data analysis and prediction with the usual techniques of multiple regres-
sion. Why this is so is clear from the example of the unpredictable Lorenz
system, which is why it is the best archetype for the current System Dynamics
paradigm.,

Non-mathematicians (or scientists and mathematicians in different specialties)
can understand the phenomenon as being essentially the same as an (old-
fashioned) pin ball machine. We know where the ball starts, where it will end
its journey eventually and the limits on that Journey, but no one does know or
can know what it will do along the way.

THE THEORY OF PREDICTABILITY

From some points of view, the turbulence is the phenomenon of interest (Gollub
et al. 1978, 1980; Swiney and Gollub 198l)., But among most people there is
only an interest in forecasting the measurables. OQutside the academic world
there is little or no appreciation of the differences between the usual models
of economists and social scientists and the System Dynamics versions. We
would do well to heed the observation of Paul Fussell (1980) that "The Top
Out-of Sight class ... is ... entirely devoid of intellectual or even emo-
tional curiosity." Decision makers and managers at lower levels also have
little time and patience for elaborate explanations and subtle repartees,
They want user-ready products to help them make the decision that will be most
likely to promote their goals.

The example of the Lorenz system illustrates why the most common econometric
variables cannot be forecast very well. An example from elementary economics
can illustrate the same phenomenon without recourse to esoteric mathematicss
the demand for two commodities that are readily substituted for one another.

A case might be oil from Britain and oil from Nigeria. Since the products are
similar in composition, a refinery can use either one without ma jor changes in
its operations or equipment. Therefore the crude oil from the two sources
will compete head-on with every little factor in cost of delivery and produc-
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tion being important in the purchase decision. Such a market can be very
volatile, especially when production exceeds reasonable demand.

At the other extreme, major business cycles persist despite (or perhaps be-
cause of) government efforts to eliminate them. A cycle is an indicator of
stable, predictable behavior. The most predictable variables should be
sought, initially by trying weighted sums (linear combinations) of the meas-
urables. For example, the total of British and Nigerian oil sold might be
very stable, but the difference will vary wildly.

Rather than debate the reality of the Kondratieff wave, a better approach
would be to determine what quantity is behaving most like a nice, self-
regulated system such as the Volterra predator-prey system (Davis 1962,

pp. 99-115). A sinusoid would be a poor choice because the harmonic oscil-
lator is not a good model of growth, overexpansion and decline whereas the
Volterra system is the "classic." The variable can be christened the
"Kondratieff-Forrester (K-F) Index" and be published like the Dow-Jones
averages, which are complicated weighted averages whose definitions are un-
known to most investors. Would knowledge cause the amplitude of the long-
period oscillations of this index to decay?

A MODEL THAT WORKED

Finding a K-F Index that is reasonable, let alone optimal, is a data process-
ing exercise well beyond the scope of this study. For an example of predict-
ability, let us consider M. King Hubbert's notoriously successful forecast of
the decline of U.S. domestic oil production (Pazik 1976).

The mathematical model used is a remarkably simple dynamic one known as the
logistic equation. There is only one state variable and three parameters;
the general form is (Luenberger 1979, pp. 316-319; Davis 1962, pp. 96-98)

c v
x(0) = 757 exp(-at)® (10)

The curve starts at 0 and rises gradually to ¢ and is an "S-shaped" form not
unlike the arctangent.

Hubbert did not possess or at least did not demonstrate any spectacular math-
ematical ability. Despite this, the logistic curve, or more often its "bell-
shaped" derivative function, is frequently called "Hubbert's Curve" (Goodwin
1980). What he did do was exemplary scientific work of selecting a minimal
model and using it properly. The rest is history, though there remain some
whose minds have been made up and are not about to allow themselves to be dis~
turbed by mere facts. Advanced technology which has increased the arena of
exploration greatly has not changed the long-term oil supply significantly.
The time bought by this technical achievement has been squandered already by
ignorance and apathy on the part of both politicians and businessmen, Today's
oil glut will not last forever.

CONCLUSIONS AND RECOMMENDATIONS

Models should be as simple as possible. The uncertainty principle of quantum
mechanics asserts a necessary trade-off of precision in position or velocity.
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Geophysical inverse theory has a trade-off of precision versus resolution.,
Nonlinear dynamical systems have an analogous trade-off of predictability
versus dimension., Choose too many variables and the model cannot be used for
curve-fitting, let alone forecasting. Use the optimum number and type of var-
iables for maximum predictability. Working back and forth between model and
data will allow this and that is the essence of the scientific method.

New methods of analysis are being discovered, though not nearly so many as the
volume of papers published would seem to indicate. Of particular interest is
a technique for identifying an attractor in a system which is known only
through a time series of one of its measurable state variables (Nicolis and
Nicolis 1984). The literature of many disciplines needs to be scanned and
with alarming consistency one finds the same thing done over and over again in
a different discipline and described in a different jargon.

System Dynamics is now over 20 years old. Despite early promises, the '"New
Economics" and der Tag for System Dynamics are not yet here., Electronics went
on for two gené;gfiaﬁg but did not come into its own until the perfection of
the transistor. That process continues today, not just in the USA, but in
Japan, Taiwan, Korea, Singapore, the USSR and elsewhere.

System Dynamics must achieve the perfection of the attractor, or perhaps the
elimination of the attractor is a more accurate description. Super computers
will be used for grinding through the phase information or nonstationary sta-
tistics common to Type Zero systems, typified by image processing and the now
popular laser disc player. System Dynamics will be done on small computers,
despite some multiple regression exercises, by people who are thinking more
than they are computing.
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