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AESTRACT

Eigenvalue analysis of dominant feedback loops promises to be a
powerful new tool for identifying the structural origins of
behavior in system dynamics models. Traditional simulation
methods for dominant loeop analysis are time—consuming and
error-prone. A new technique permits calculating the marginal
contribution of each feedback loop to each mode of behavior in a
model. The technigque computes the elasticity of each eigenvalue
with respect to the gain of each loop. The elasticities are
complex numbers showing the percentage change in natural
frequency and damping of each eigenvalue resulting from a one
percent change in loop gain. The magnitude of an elasticity
measures the overall importance of a loop to a mode of behavior.
The magnitudes can be used to rank loops by relative dominance
over each mode, or to rank; modes by relative importance to each
loop. The technique can be used to analyze both linear and some
nonlinear behavior modes.

I. Introduction.

Fesolved: The paradigm of system dynamics should be expanded

to include eigenvalue analysis of dominant feedback loops.

Identifying the structural origins of behavior in complex
system dynamics models is currently a difficult and error-prone
process. Identifying dominant feedback loops has traditionally
been done by one of two approaches. The first method involves

disconnecting unimportant loops and showing that the remaining,
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izolated loops produce behavior similar to that of the whole
model. The second approach involves making smal} changes in
model parameters then observing the changes in model behavior.
Loops containing influential parameters are assumed to be

dominant.

The advantages and disadvantages of the two traditional
approaches are examined in detail below. Eoth approaches,
however, are subject to major shortcomings. Analysis by either

_method, is subject to error and requires a large number of

simulation runs.

A new technigque involving eigenvalue analysis of loop

dominance overcomes the limitations of both traditional

approaches. The eigenvalue method provides exhausive analysis of

loop dominance without the need for simulation. The new approach

computes the sensitivity of each eigenvalue of a model to a
change in the gain of each feedback loop. The analysis can be

made completely automatic, eliminating the uncertainties

associated with simulation approaches. The amount of computation

required is relatively small and complete results can be reported

in a two-dimensional table.

Unfortunately the eigenvalue method introduces its own
limitations. The new approach can be applied directly only to

the analysis of linear behavior modes. However, variants of the
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method are discussed that extend its usefulress to at least some
of the nonlinear behavior modes commonly encountered in system

dynamics models.

II. Two Traditional Approaches to Analyzing Loop Dominance.

The Loop Isolation Approach.

One traditional method for identifying dominant feedback
loops involves isolating dominant substructures within a complete
model. First, the behavio? of the whole model is determined by
simulation. Important behavior modes are identified. A
hypothesis is then formed about which substructure is responsible
for the important modes. fhe hypoduces the modes of interest,
the hypothesis is not refuted. If the isolated substructure does
not reproduce the important modes, a new hypothesis is formed and
new tests are performed. The end result is a small number of
reported tests showing that a subset of all loops can generate

behavior modes observed in the complete model.

A substructure can be isolated by blocking the passage of
informaéian to or from decoupled parts of the system. Blocking
the flow of infcrmgtion is usually accomplished by setting time
constants to infinity, setting parameters to zero, flattening
table functions, or deactivating switches. If time constants,
parameters or tables are not present in the proper information

channels, SWITCH functions can be added to permit blockage.
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The loop isolation technique has two important advantages:
The concept is simple and intuitively appealing. If a part
of a medel reproduces the behavior Df the whole, then the
. part probably contains the feedback loops responsible for
the behavior of the cﬁmpléte model .
The loop isolation approach retains the full nonlinearity of
the feedback loops that are isolated. No approximations

need be made.

The loop isolation technique is also subject to several

limitations:

- A unique t;me constant, parameter, table, or switch is
required in almost every.causal link between variables to
permit testing of various hypothises about loop dominance.
The resulting clutter in model equations is confusing to
anyone trying to understand the model structure.

The number of tests required to examine the behavior of
every possible substructure is very large. A separate
simulation run ie required to test each combination of
feedback loops in the model. The maximum number of possible
tests is 2n where n is the number of distinct feedback
loops. (The actual number of tests would be somewhat less
than 2n because some of the combinations involve loops that
do not conrmect with each other.) A typical ratio of

feedback loops to level variables in a well-structwred
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system dynamics model may be about three- or five-to-one. A
twenty—-level model might have some 70 feedback loops. The
total number of possible combinations of loops in
substructures would be about 1.2%1021. Even after dropping
96% of these combinations because not all the loops
interconnect, the remaining number of substructures to be
tested is on the order of 1020. Clearly, exhaustive testing
by simulation would be prohibitively time~consuming and
expensivé.

The loop isolation technigue does not identify the relative
importance of loops included in the substructure. Some of
the included loops may be critical while others might be
dropped with minimal ;onseduences. A positive test simply
indicates that a sufficient set of loops has been
identified, but not that every member of the set is
necessary to reproduce important behavior modes of the
complete model.

The loop isolation technigque does not indicate the possible
importance of loops excluded from the substructure under
evamination. An excluded loop could have a cancelling
effect on an included loop. A behavior mode might be
falsely attributed to an included loop while the true cause
lay elsewhere‘§n the model. In a similar vein, two excluded
two excluded loops might individually have important effects

on model behavior but, when taken together, have mutually

cancelling effects.
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In sum, the loop isolation approach is a simple, intuitively
appealing way to find substructures of a model that are capable
of creating important behavior modes seen in a complete model.
The approach retains all nonlinearities present in the
substructure. The method does not guarantee that a particular
subétructure contains either all the important loops or only the
important loops. An exhaustive analysis of loop dominance by the
isolation technique is virtually impossible given the enormous
number of simulation runs requi;ed.

" The Farameter Variation Approach.

& second traditional approach to dominant loop analysis
involves varying parameters in a model and observing the induced
changes in behavior. The first step is to simulate model .
behavior and identify important modes. The next step is to form
a hypothesis about loop dominance, selecting the feedback loop(s)
thought to control important modes. The hypothesis is then
tested by varying a parameter or table function in the loop(s).
The behavior of the model is simulated again with the parameter
change. I1f the important behavior modes are changed
significantly, the hypotbesis is not refuted. If the behavior of
tﬁe model is not affected by the parameter change, then the

hypothesis must be revised and new tests must be performed. In

the final analysis, loops containing parameters with the greatest

affects on behavior are reported as dominant.
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The parameter variation approach to dominant loop analysis
offers several advantages:

~ The concept is simple and intuitively appealing. If
changing a parameter significantly affects behavior, then
thé parameter.must lie in an important feedback loop.

- The parameter variaticn approach retains all the
nonlinearities present in the model. No approximation or
simplification is made to the original nonlinear structure.

- The paraheter variation method, unlike the loop isolation
approach, does not require deactivating pieces of model
structure. The full model is active in every simulation
test.

- The parameter variatinn approach provides a meaure of the
relative importance of different loops. Farameters with

larger effects on important behavior modes lie in the more

important loops.

The parameter variation technigque alsc has major
limitgticns:
- Isolating the effect of a particular loop may not be
poseible with a single~parameter test. Every parameter in a
loop may lie in other loops as well. Without a
comprehensive computerized search, it is difficult to
ascertain how many feedback loops involve a particular
parameter or table. A proper test migh{ be constructed by
varying more than one parameter at a time. Offsetting

effects from multiple parameter changes would leave only one
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loop altered. Such tests, however, are very difficult to
construct.

- To insure that no important loop is overlooked, a separate
simulation test must be performed for every loop 15 thg
model. A twenty-level model might require 50 to 100

"simulation runs for complete testing.

- The effect of a parameter change on & particular behavior
mode isvoften difficult to determine from simulation output.
A simulation run shows the.effect of & particular change on
all modes simultaneou;ly. Multiple modes are difficult to
separate visually in plotted output., The need for visual

interpretation invites error.

In sum, the parameter variation approach to dominant loop
analyeis is a{§imple and intuifively appealing way to assess the
marginal contribution of feedback loops to the various behavior
modes of a model. The approach retains the the full model
structure including all nonlinearities at &ll stages of analysis.
The technigue does not, however, guarantee finding all important
loops unless every loop is identified and tested separately.
Tests are difficult to construct when parametere and tables lie
in more than one loop, as they do in most system dynamics models.
Fﬁrthermure, the effects of a loop on different behavior modes

are difficult to untangle.
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11I. Dominant lLoop Identification Via Eigenvalue Analysis.

A new approach to identifying dominant loops is proposed
here. 'The‘new method involves eigenvalue analysis of model
behavior. Eigenvalues correspond to the linear behavior modes
present in a model. Eigenvalues can be ;Dmputed.directly from
knowledge of system structure  and parameters without need for
simulation. The technique computes the'sensitivity of the
eigenvalue; (behavior modes) to changes in the strength of each
feedback loop. An intermeaiate result is an array of complex
numbers measuring the effect of a change in the gain of each loop
on the freqcannot currently be applied dire;tly to nonlinear
systems. Linearization, héwever, may not be as severe a
limitation as first imagined. The next section explores how the
eigenvalue approach can be used to understand the origins of some
nonlinear modes encountered in system dynamics models.
Linearization requires that each variable be eiupressed as a

linear combination of other variables in the model:

J
Vi -Z ai] . VJ (1)
where each constant parameter a,. is the partial derivative of

1]

variable VY, with respect to variable Vj:

>V,
= (2)

-
o v,
0 3

The derivatives can be calculated either analytically or
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sperimentally by vaying the value of Vj and observing the change

in Vi . Each coefficient aij is referréd to as the gain of the
e r——— T —

causal link between variable Vj and variable Vi.

. The individual equations for each variable are combined into

a system of equations desdribing the entire model:

%
Ay By

*
= |2
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3

where:
& - Vector of level variable derivatives (net rates)
X — vector of level variabies
Y ~ vector of non-level variables (rates and auxiliaries)
ﬁ*“ matrix of partial derivatives aij from (1).
For eigenvalue analysis, equation (3) must be collapsed to
form:

-k- =

>

X 4)

N *
The matrix A in equation (4) is computed from @& in equation ()

by the formula:
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The eigenvalues of matrix_A are then computed. The
eigenvalues describe all the linear behavior modes preseent in
the model. Eigenvalues are, in general, complex numbers that can
be plotted in the complex plane. Figure 1 shows several
eigenvalues plottea in the complex plane and the corresponding
dynamic behavior patterns they represent. An eigenvalue with no
imaginary part corresponds to a mode of exponential growth or
decay. Eigenvalues with non-zero imaginary parts come in complex

conjugate paifs and correspond to oécillatory modes of behavior.[1]

The next step is to compute the sensitivity of each
eigenvalue to a change in the strength of each feedback loop.
The sensitivity measure isAbased on the partial derivative of the
eigenvalue with respect to the gain of the loop. Figure 2 shows
the partial derivative of an eigenvalue with respect to the gain
of a loop plotted as an extension of the eigenvalue vector. The
partial derivative shows the absolute change in the eigenvalue

for a change in loop gain.

The raw partial derivative is then multiplied by the loop
gain ana divided by the eigenvalue to form a dimensionless index
of sensitivity. Thg index is called the eigenvalue elasticity
with respect to loop gain, or loop gain elasticity for short.

The elasticity is the percentage change in the eigenvalue
resulting from a one percent change in the gain of the loop. The

elasticity is computed as:
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Figure 1. Typical Eigenvalues and Associated Behavior Modes
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where:

Ekn~ elasticity of the kth eigenvalue with respect to the gain
of the nth léop

;k - kth eigenvalue

9y ~ gain of the nth loop.

Eigure % shows the eigenvalue elasticity corresponding to
the partial derivatiye shpwn in Figure 2. Multiplication by gn/Xk
rotates' and scales the dotted axes in Figure 2 so that the
partial detrivative refers to a standardized eigehvalue of length
one and angle zero. The real component of the elasticity then
chows the effect of loop gain on the natural frequency of the

eigenvalue. The imaginary component of the elasticity shows the

effect of loop gain on the damping ratio of the eigenvalue.[Z]
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Figure 3, Loop Gain Elasticity

The eigernvalue elasticities with respect to loop gains are
not computed directly. In%tead, the loop gain elasticities are
computed indirectly from the elasticiites of the eigenvalues with
respect to the gains of the iﬁdividual causal links between
variables. The elasticity of the kth eigenvalue with respect to
the gain of the causal link between variable Vj and variable Vi

is defined as:

3 Mk 343

E .. = (7)
kij
3aij >\k
and computed according to the formula:@]
32 13
= | M

Bois T B o B @

ij k

where Ly and Ry are the left and right eigenvectors associated

with the kth eigenvalue. The right eigenvectors are ususally

191

computed by packaged programs that compute sigenvalues. The
matrix of left eigenvectors can be computed as the inverse of the
martrix of right eigenvectors. The partial derivative of the
matrix e with resp;ct to the gain of the link between Vj and Vi
can be computed by reévaluating equation (35) before and after a

small change in the value of the gain a The change in matrix

i3
A is divided by the change in aij to obtain the partial

derivative:

At * 1 _*
da AA Agq * Rqp (27 Ryp) By

da,. Na, . A3

(7}

The eigenvalue elasticities with respect to loop gains can
now be determined from the. elasticities with respect to the link
gains. By Mason's Rule the coefficients of the characteristic
equation of a system can be expressed as functions of loop gains.
Eecause the eigenvalues of a system are determined by the
coefficients of the characteristic equation, the eigenvalues are
also functions of the loop gains. Therefore, the link gain

elasticity formula in (7) can be rewritten as:

=b>k

3\
a,
01

ai5 IAk 9% a3
= . . (1Q)
N o %9 a5 N

Bris
]
where 9n is the gafn of loop n. Eecause the gain of & loop is

equal to the product of gains of the causal links in the loop,
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“13

= 0 (1
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when the link from variable Vj to Vy does not lie in loop n; and

LN .
= (12)

a5 a4

when the link from Vj to Vi does lie in the loop. In light of

(11) and (12) above, equation (7) can be rewritten as:

Ei bkk. %n

E .. = —_ (13)
kij

agn ; >‘k

where % indicates summation over all loops containing the link
Tfrom Vj to Vi. In other words, the elasticity of an eigenvalue
with respect to the gain of a link is equal to the sum of the

elasticities of the eigenvalue with respect to the gains of all

1
the loops that pass through the link.

Fesult (13) permits setting up a system of simultaneous
linear equations for each eigenvalue. The equations state that
each limk gain elasticity equals the sum of the loop gain
plasticities of every loop passing through the link., Setting up
the equations requires that all feedback loops in the model be
identified. An automatic loop—search algorythm can be used. A
feedback loeop is defined here in the conventional manner as a
circular chain of causal links that does not contain the same

variable more than once.

1. Use of Mason's Rule to demonstrate result (13) was suggested

by Stanley M. Liberty, at the University of Nebraska - Lincoln.
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After finding all loops and the links céntained in each
loop, thé systems of simultaneous equations can be written.
Having already evaluated the link gain elasticities, the
equations can be solved for the loop gain elasticities. In
general, the equations will over—-determine the loop gain
elasticities (there will bé more links than loops in a typical
model) Eut the equations will not be incohsiﬁten£. After solving
the system vaequations far each eigenvalue, the results can be
compiled into a two-—dimensional array relating eigenvalues to
loops in the model. Each entry in the array is the elasticity of
an eigenvalue with respect to the gain of a loop. The entries
are complex numbers showing the percentage change in both
frequency and damping of the eigenvalue for a one percent change
in loop gain. The magnitude of each complex number gives_an
overall index of the importance of a feedback loop to an
eigenvalue. The‘magnitudes can be used to generate a list
ranking the feedback loops in order of relative importance to a
particular eigenvalue. The magnitudes can also be used to create
a list of eigenvalues in order of relative importance for a
particular loop. The raw elasticities can be used to determine
how an "important" loop contributes to the natural frequency and

damping ratio of an eigenvalue.

Applications of the Eigenvalue Approach.

As seen in the preceding section, the eigenvalue approach to

dominant loop analysisimeaaures directly the marginal
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contribution of every feedback loop to every behavior mode in the
linear approximation to an underlying nonlinear model. The
method permits ranking of the feedback loops by importance to a
given eigenvalue and/or ranking of the eigenvalues by importance
for a given locp.' The method can be used directly to analyie the
beha;ior of linear models or quasi-linear models where the role
of nonlinearities is relatively minor. The approach can also be
used directly to analyze linear behavior modes within strongly
nonlinear models. The method can be used indirectly to analy:ze

the structural origin of certain nonlinear behavior modees as

‘well.

The linear behavior modes amenable to direct analysis by the
eigenValue technique are:

~Exponential growth,

-Exponential decay,

~Damped oscillation,

-Exploding oscillation, and

-Combinations of the above.

The nonlinear behavior modes amenable to indirect analysis
by the eigenvalue approach include:

-"g"—ghaped growth,

-Overshoot—and—-collapse, and

~Limit cycles.
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Ta analyze nonlinear modes of S-shaped érowth and
overshcoé—and—collapse, the eigenvalue method can be applied
repeatedly at different operating points during the transition
phases from growth~—to-stagnation, stagnation-to-decline, and
decline-to equilibrium. The results must be interpreted
carefully., Foth the eigenv%lues and the loops that dominate them
will change during the transition periods. By carefully tracking
the chnages, the shifting loop dominance that creates the

nonlinear behavior modes can be ascertained.

VTo analyze the dominant loops in a limit cycle, the
eigenyalue approach can be applied directly at the underlying
unstable equilibrium point to determine the causes of the
expi&sive cycle. The analysis can be used again at the extreme

swings of the cycle to determiné whichi:lotpe keep the amplitude

of the cycle from growing indefinitely.

The practicality of using eigenvalue analysis of loop
dominénce in nonlinear models has not yet been determined. While
the approach appears to show promise, a software package has not
yet been developed to permit experimentation. The approach may
prove to be toc costly to apply repeatedly. The interpretation
of shifting eigenvaiues and loop dominance may prove too

difficult.
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Advantages of the Eigenvalue Approach.

The eigenvalue approach to analyzing loop dominance has

several advantages over the two traditional approaches examined

at the beginning of this paper.

The eigenvalue technique directly measures the impact of
loops on behavior rather than the impact of parémeters on
behavior.

The technigue can provide a one-dimensional measure of
dominance for ranking loops by their importance to a mode.
The eigenvalue approach automatically provides exhaustive
analysis of the impact of every loop on every mode.

The technique offers great saving both in the amount of
computatioh requ;red to obtain results and in the amount of
time required to interpret those results.

The technique offers a standardized; reproducible procedure
for analyzing loop dominance.

The complete results of eigenvalue analysis can be presented

in a very compact form.

Limitations of the Eigenvalue Approach.

The eigenvalue technique proposed here is certainly not

without limitations of its own. Some of those limitations are

inherent in the theory and are examined below. Other limitations
may become apparent when the.technique is actually applied. The
197

limitations currently known are:

- The technigue measures only the change in eigenvalues

induced by small incremental changes in the gain of each
feedback loop. The loops judged to be dominant By this
criterion may not be capable of reproducing the mode in
question when isolated from the rest of the model structure.
The loop dominance analysis may not be a good guide to model
simplification.

Results of the eigenvalue analysis are only strictly
applicable to the linear modes around a particular operating
point in nonlinear systems. The analysis must be applied
repeatedly at different operating points to amnalyze the
shifting loop dominanée that accounts for nonlinear behavior
modes. The necessary interpretation of results at different
operating points opens the door to errors in analysis. Only
experience will tell whether the technique is useful for
analyzing the nonlinear modes commonly encountered in system

dynamics models.

- Np software is currently available to permit application of

the eigenvalue technique to system dynamics models. At
least two efforts are in progress but no dates have yet been

set for chipment of a user—friendly software packages.

Extensions of the Eigenvalue Approach.

Several possible extensions of the current work should be

rneted:
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- The approach can be extended to include technigues for IV. Conclusions.
analyzing nonlinear behavior modes. In its simplest form

such an extension might be a set of rules~of-thumb for
) Two techniques are traditionally used to determine which

interpretation of results from reapplication of the methods )
’ feedback loops are responsible for behavior in a system dynamics

outlined here at different operating'points. A more
. model. Eoth technigues have major drawbacks. The first

sophisticated extension might use similar techniques to
technigue involves isolating a set of loops from the rest of the

examine the behavior of higher—order approximations to a
model to show that they can produce the behavior mode in

full nonlinear model. The linear analysis examines only the
) ) guestion. The loop isolation approach does not indicate whether

properties of the first term in a Taylor series expansion of
or not all loops in the set are important to the mode, nor does

a nonlinear system. The properties of the higher—-order .
it indicate the existence of important loops not in the selected

terms may a&also yield to a qualitatively similar form of
cet. The second technique involves changing the parameters and

analysisl
tables of a model and observing the effects on behavior. The

- The eigenvalue approach could be modified to examine the
! parameter variation approach is cumbersome because a single

dominance of feedback loops in creating the frequency
parameter change may alter several loops simultaneously; the

response characteristics of a system. Freguency repsonse
effects of an individual loop are difficult to measure. The

may be a better way to measure behavior in oscillatory
parameter variation approach is further complicated by the fact

systems than eigenvalues.
that a parameter change may affect several different behavior

- The eigenvalue analysis of dominant loops, while designed
modes; the effects on different modes are difficult to untangle

for another purpose, might be a useful guide to reducing
from simulation output. Eoth traditional approaches require an

model complexity. Loops with a small marginal contribution
extraordinarily large number of simulation runs for complete

to a given eigenvalue might be eliminated without
’ analysis of loop dominance.
significantly altering the behavior mode. Neither the

theoretical nor empirical implications of such use have been

examined. A new approach to analyzing loop dominance is suggested
here. The new technigue involves linearizing the underlyving
norlinear simulation model. Then the eigenvalues of the linear

approximation are computed. Each eigenvalue corresponds to a
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mode of behavior in the model. The sensitivity of each
eigenvalue to a change in the gain of each feedbhack loop is then
calculated. The sencitivity is expressed as an elasticity, &
dimensionless ratic, showing the percentage change in the
eigenvalue for a 6ne percent change in thé gain of the iovop. The
elas£icity is a complex number whose real and imaginary parts
show the effects of a change in loop gain on the natural
frequency and damping ratio of ﬁhe eigenvalue respectively.
Fesults of the analysis can be reported as a two-dimensional
array of elasticities relating each eigenvalue to each loop. The
'array can be used to generate a ranking of feedback loops by
importance to each Eigenvaiue or a ranking of eigenvalues bf
importance for each loop. . The magnitude of the elasticities can
be used as & ocne-~dimensional measﬁre of "importance for the

purpose of ranking.

The new technique prodiwves a compact, automatic,
reproducible method for finding dominant loope. The
computational burden is small relative to the traditional
approaches. The analysis is also exhaustive; the effect of every

loop on every mode is calculated.

The new technigue is directly applicable linear and
nearly-linear systems and can also be used to analyze linear
mcdés within nonlinear systems. The technigque may be applied

1ndirectly to the analysis of nonlinear behavior modes. Thie
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practical utility of the technique for analyzing the nonlinear
modes commonly encounterd in system dynamics models has not yet

been determined.

Unfortunately, no user—friendly software package is
currently available that permits eigenvalue analysis of loop
dominance. Frototype packages should be available within a year.
When the neceésary socftware becomes avalable, eigenvalue analysis
of loop dominance should become an important new tool for

practitioners of system dynamics.
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