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Summary

An experiment was conducted using DYNAMO simulation to gain an under=~
standing of the reiation between the structure and behavior for a well-defined
- family of nonlinear,; second-order systems. The result of the empirical in-
vestigation was 1) a taxonomy of structures--a categorizationof the structures
that give rise to all of the possible behavior modes; and 2) a set of ob-
servations and precepts--simply stated guidelines gleéned from the taxonomy
that relate structure and behavior. -

Structures In@estigated

The infinite get of second-order structures is reducéd to a well~
defined finite subset by imposing the fdllowing restrictions:

1. Parémeters and auxilliaries are collapsed into the rate equations;

2. Exogenous inputs, delays, and all special functions are ex-

cluded;

3. One net rate affects each level, and each level is initialized

to zero.

Thése restrictions collapse the structures to two levels, two rates
and the four equations that link each level to each rate (constituting the
major loop and two minor 1o;ps). The structures become explicitly defined
by restricting the four level-to-rate equations to the eight monétonic table

functions, shown in figure 1 in "counterconcave" pairs.
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Fig. 1. Eight level-to-rate functions shown in counterconcave pairs

The rate equations are tﬁen formed by pairwise linear coupling of
these tables functions. (The resulting rate equations are, however, neither

4
monotonic nor linear.) Defined in this manner there are ™ & Bi = 4,672
1=2
structures.

Behavior yodes

The* behaviors arising from both levels of all the structures are
classified into behavior modes. These modes can be defined rigorously by
the slope and curvature of the time-varying functions that describe the be-
haviors, and similar behaviors are defined ag all those that belong to the
same mode. Thus, for example, the two behavior curves of figure 2 are
classified in the overshoot and decline behavior mode because both curves
are first increasing and concave down, then decreasing and concave down, and

finally decreasing and concave up.
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Fig. 2. Example of similar overshoot and decline behaviors
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With this classification scheme, all éf the structures generate be-
haviors that fall into 3 modes of stable behavior: 1) Asymptotic {ex-
ponential growth and decline to a limit, and sigmoidal growth and decline);
2) overshoot and decliﬂe; and 3) oscillatory (sustained and damped); and
3 modes of unstable behavior: 1 ) Exponential growth and collapse,

2 ) Overshoot and collapse,'and 3 ) Explosive oscillation. .

A random sample of 412 or 9% of the defined scructu;es and behaviors
were classified by this taxonomy. Within each behavior mode, the taxonomy
was subdivided according to whether the strﬁcture contained zero, oue, or two
minor loops. If one or both of the levelé exhiBitgd a particular behavior,
the structure was classified by that behavior mode. When each of the two
levels exhibited differpnt behavior modes, then the structure was included in
the taxonomy twice.

Results

From this classification procedure eight precepts were developed which
held for all ché structures observed; however, the validity of the precept%
is assured only for these structures. The utility of these precepts, then,
is not as a substitute for computer simulation to analyze models, but rather
as a means for students and practitioners of systems dynamics to develop an
intuitive understanding of the underlying forces that drive simple, non-

linear systems.

Second-Order Systems without Minor Loops

Pgecept 1: The system oscillates when the major loop is negative and the zero

and second derivatives of each level-to-rate function are opposite in sign.

Only sustained oscillation is possible, and it occurs in both levels simultaneously.

Precept 2: Systems in this category achieve stability only through simple

asymptotic growth.



Precept 3: A structure that exhibits growth to a limit in one of its levels
maintains that behavior Mode when the level-to-rate function of that level

anly is replaced by its counterconcave function.

Second-Order Systems with One or Two Minor Loops

Precept 4: A system with one minor loop oscﬂ1a£es when the major loop is
negative and the zero and second derivative of the positive level-to-rate
function of this loop are of opposite sign. This oscillation is damped (in
both levels simultaneously) if the minor loop is negative and the level-to- .
rate finction of this loop is concave up. 'n:xe oscillation explodes if the
minor loop is positive and its level-to-rate function is concave down. Sus-

tained oscillation can never occur.

Precept 5: For systems with one minor loop, the steady~state behavior of a
level thét initially overshoots depends on the polarity of the minor loop: if
the minor loop is negative, the overshoot in that level is followed by
,declgne; if the minor loops is positive, the overshoot is followed by col-
lqpsé; In either case, if both levels overshoot, they then either both

decline or both collapse.

Precept 6: If one level of a system with two minor loops exhibits damped

oscillation, the other level always exhibits a stable behavior mode.

Precept 7: Exponential growth is not limited to structures with positive
major loops: growth to a limit is not limited to structures with negative

major loops.

Precept 8: In structures with two minor loops, sustained oscillation can
ocowr only if the two level-to-rate fimctions affecting each rate are counter-

concave to each other and of the sane-curvature.
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