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Dynamic hypothesis is a product of insights that the modeller has. It is dynamic
in the following sense:

(1) There is a causal equivalence between structure and behavior
(2) Svstem behavior is a function of time.

Optimization in SD requires a computerized feedback process in model construction.
There are no technical constraints that preclude starting from a set of causal
relationships. When the right dynamic hypothesis is a subset of this set, the com-
puter might be able to deduce the hypothesis from causal raw material using the

value of an objective function.

Now we have a 'dvnamic' hypothesis which is dynamic in the sense that the hypoth-
esis itself wiil change continuously during the optimization process. This 'dynamic'
hvpothesis might, therefore, also be called ‘transient hypothesis'.

A directed graph, manifesting dynamic hypothesis, can be converted to a matrix
or vice versa as they are mathematically equivalent descriptions of the same phe-
nomenon. In the matrix version, horizontal lines indicate independent variables and
_veniml lines dependent ones. Fig.l shows how a simple problem might be described

in two ways:
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Figure l. Alternative wayvs of describing a problem

But there is a major difference in the approaches used. Fig.la,relates to system
analysis, Fig.lb to system synthesis. Suppose now that Fig.la describes a dynamic
hypothesis. The picture indicates then that a modeller has been able to analyse
the over-all dynamic effect of the causal relationships shown. Therefore, we have
received an end procduct.
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Fig.Ib describes a set of causal relationships each indicated by a number one in
;he corresponding matrix cell. The focus of interest is now in each separate causal -
&;elationship- This synthesis alternative deserves closer attention because managers
think in open-loop, not in closed-loop terms.

‘Dynamic' hypothesis is based on the system synthesis approach, but further as-
sumes , that a selection problem must be solved: How to choose the right subset. -
of causal relatioships from the set available. Thus we do not have an end product,
but. raw material that should be combined in some way. I suggest that a computer
might do this transformation work. But I would be reluctant to say that dynamic
and '&ynamic‘ hypothesis are universal concepts that are mutually exclusive. On
the. contrary, it is quite likely that a repetitive use of both variations will give
the best results. '

Application example

Production can be based on a sales forecast or ‘on firm orders that have supple-
mented the backlog. The choice between these two modes of action depends on
continuity and on the volume of future demand. To simplify the presentaticn to

follow, the future is assumed to be known.

Suppose that we have a system that is customer driven indicating that procuction
is an order-taker. Figure 2 shows the simplified causal-loop diagram of the svs-
tem. A horizontal line between demand and supply marks the boundary between the
customer and the producer. Consequently backlog and inventory belong to different
combanies, even though they belong to the same system. In this framework, a
model can be constructed from the standpoint of either demand or supply. However

. it requires that the corresponding model part be described in more detail.

Demand Orders g IRvEntory Customer
SuprpPly Backloa -—-—-——-— Production Producer

Figure 2. Framework for the application example

Modelling in SD proceeds at two stages: reproduction and improvement. At the
reproduction stage, a model is constructed that is an acceptable description of the
present system. At the improvement stage, the reproduction version is changed. In
order to get an 'empirical' yardstick for comparisons in this study, mode} improve~
ment was performed first, and use was made of the viewpoint of the customer.As a
resuit, the optimal decision rule for the customer-ordering-behavior was found.



This mocel version generated graphs which we can now label 'real world' behavior.
The production decision rule was very simple in that model but could it be found
again from a set of potential decision rules 7 Wé shall attempt to find it with.a

new mode! tc be asserrbled by means of transient hypothesis.

Suppose that costs should be minimized. Because mocel behavior and costs (via
the objective function) are substitutes as vardsticks, some error between real
world behavior and mode! behavior can be minimized when optimization is based
on error-related relative costs. Model improvement required an absolute measure
in real cost terms rather than a relative measure. Figure 3 illustrates the similarity
of the reproduction and .improvement stages when cost functions are either relative
or absolute. Demand data and cost function are needed to generate numerical

values for a model and decisions.
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Figure 3. Demand and cost information generate a model

Use of a relative cost function requires that one of the graphs should be selected
as the reference mode to be imitated. A reference point from another curve is
also needed to guide the curve fitting procedure. Production starting rate PSR and
the final value of inventory INV were chosen for that purpos In more complicated
models, an error index is needed which combines the reference mode based infor-

mation from several 'real world' graphs.

Model formulation begins from the causal relationships matrix of Figure 4. Each
matrix row is a general description of some model equation. The first row shows,
for example, that INV=f(INV,PCR,SAL). The 'ones' underlined indicate additions to

the 'real world' version.

The procuction starting rate PSR will now be defined as a set from which the
computer has to select the right subset. For purposes of exposition, a transformation
te an open-loop, hierarchical structure will be made. The decision tree thus received
looks similar to 2 Bill of Material in mass-production but there is one fundamental
difference: Instead of minimizing assembly lead time with a fixed product structure,

a variable model structure will be used keeping the solution interval DT fixed.
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Any SD equation can be disaggregated to its components in order show the hierarchy
of causal relationships. We see from Figure 4, for example, that PSR={(BCOR,AVP,IPIC}
and BCOR=£(BLG,TBLG). This recursive procedure produced the structure of PSR,
given in Figure 5. Hierarchical levels (not the same as level variables in SD) were

defined in terms of causal distance from the decision rule.

CAUSAL DISTANCE

Causal distancel
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Figure 5. The PSR-equation in the decision tree form

Five decision parameters (Dl,...,D5), indicated with valves, were added to the model
to give structural variety for the optimization process. A high-echelon vaive can
cancel out the effects of a low echelon valve. For example, D3 might have any

value when DI has the value of zero.

Use of decision parameters transforms the optimization process into multi-objective
optimization within a single-objective objective function. For example, target back-
log TBLG is a linear combination of average production AVP and Average Customer
Order Rate ACOR:

TBLG.K=D3*AVP.K+(1-D3)*ACOR.K , where 0%$D3£1

Decision parameter D3 is a variable in the optimization process and thus receives
some value which corresponds to the minimum regret from the over-all viewpoint.

There are three target values for the producer: Target Backlog TBLG, Indicated
Production INP, and Target In-Process Inventory TIPL Each of these terms should
be collected from weighted components, deriving from demand and supply. The
decision parameters D3, D4 and D5 are there for this purpose. The decision
parameters D1 and D2 assess proportional controllers. Thus both economic, and

technical viewpoint were needed in the transient hypothesis formulation.
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[. Introduction

The SD approach is based on control theorv. As with general system theories, it
postulates that system structure causes system behavior. Computer simulation used
to be the only means of solving complicated models at the time SD was invented.

Therefore,

(1) only svstem structure and system behavior could be used as
vardsticks in model Validation »

(2) without an intuitive or intelligent guess, that related structural
explanation to model behavior, all modelling work would have

been fruitless or at least extremely laborious.

-
*

In computer simulation, no automatic feedback from modelb behavior to structural
i changes is feasible. A human link is needed and, therefore, system dynamists have
rightly argued about the significance of insights gained from the very modelling
process. Without insights, no feedback mechanism would work properly in model
construction. The authoritarian relationship between man and machine, prevailing

in SD, is an outgrowth of this situation.

II. Hypothesis types

Dynamic hvpothesis is an intuitive explanation concerning the causal relationships
that produce observed system behavior. It is generally believed by system dynamists

that a dynamic hypothesis is necessary before any modelling efforts can begin.

Dynamic hypothesis is a product of insights that the modeller has. It is dvnamic

in the following sense:



(1) There is a causal equivalence between structure and behavior

(2) System behavior is a function of time.

Optimization in SD requires a computerized feedback process in model constructic”
There are no technical constraints that preclude starting from a set of causa.
relationships. When the right dynamic hypothesis is a subset of this set, the com-
puter might be able to deduce the hypothesis from causal raw material using the

value of an objective function.

Now we have a 'dvnamic' hypothesis which is dynamic in the sense that the hypoth-
esis itself will change continuously during the optimization process. This 'dynamic’

hypothesis might, therefore, also be called 'transient hypothesis'.

A directed graph, manifesting dynamic hypothesis, can be converted to a matrix
or vice versa as they are mathematically equivalent descriptions of the same phe-
nomenon. In the matrix version, horizontal lines indicate independent variables and
vertical lines dependent ones. F'ig.l shows how a simple problem might be described

in two ways:
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Figure 1. Alternative ways of describing a problem

But there is a major difference in the approaches used. Fig.la relates to system
analysis, Fig.lb to system synthesis. Suppose now that Fig.la describes a dvnamic
hypothesis. The picture indicates then that a modeller has been able to analyse
the over-all dynamic effect of the causal relationships shown. Therefore, we have

received an end product.

Fig.lb describes a set of causal relationships each indicated by a number one in
the _corresponding matrix cell. The focus of interest is now in each separate causal
relationship. This synthesis alternative deserves closer attention because managers

think in open-loop, not in closed-loop terms.
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'Dynamic' hypothesis is based on the system synthesis approach, but further as-
sumes , that a selection problem must be solved: How to choose the right fsubset
of causal relatioships from the set available. Thus we do not have an Ve'nld prfoduc.t,-
but raw material that should be combined in some way. I suggest that a computer
might do this transformation work. But I would be reluctant to say that dynamié
and 'dynamic' hypothesis are universal concepts that are mutually exclusive. On

the contrary, it is quite likely that a repetitive use of both variations will give
the best results.

III. Application example

l. General descriptioh

Production can be based on a sales forecast or on firm orders that have supplé-
mented the backlog. The choice between these two modes of action depehds on
continuity and on the volume of future demand. To simplifv theipresenAtation to
follow, the future is assumed to be known. ' ' v

Suppose that we have a system that is customer driven indicating that productioh
is an order-taker. Figure 2 shows the simplified causal-loop dia‘gram of the sys-
tem. A horizontal line between demand and supply marks the boundar}) between the _
customer and the producer. Consequently backlog and inventory belong to different
companies, even though they belong to the same systém. In this framework, a
model can be constructed from the standpoint of either demand or supply.' Howé?ef

it requires that the corresponding model part be described in more detail.

Demand - grders a@——e-—-o- Inventory Customer
Supprly Baclog ——————uw= Production - Producer

Figure 2. Framework for the application example

Modelling in SD proceeds at two stages: reproduction and improvement. At the
reproduction stage, a mode!l is constructed that is an acceptable description of the
present system. At the improvement stage, the reproduction version is changed. In
order to get ah 'empirical' vardstick for comparisons in this study, mode 'improve-
ment was performed first, and use was made of the viewpoint of the customer.As a
result, the optimal decision rule for the customer-ordering-behavior was found.
This model version generated graphs which we can now label 'real world' behavior.
The production decision rule was very simple in that model but could it be  found
again from a set of potential decision rules ? We shall attempt to find it with a

new model to be assembled by means of transient hvpothesis.
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Suppose that costs should be minimized. Because model behavior and costs. (via
the objective function) are substitutes as yardsticks, some error between real
world behavior and model behavior can be minimized when optimization is based
on error-related relative costs. Model improvement required an absolute measure
in real cost terms rather than a relative measure. Figﬁre 3 illustrates the similarity
of the reproduction and improvement stages when cost functions are either relative
or absolute. Demand data and cost function are needed to generate numerical

“values for a model and decisions.

D D = demand data
T——% (| ——— Decisions M = model .
C/ C = cost function

Figure 3. Demand and cost information generate a model

Use of a relative cost function requires that one of the graphs should be selected
as the reference mode to be imitated. A reference point from another curve is
also needed to guide the curve fitting procedure. Production starting rate PSR and
the final value of inventory INV were chosen for that purpos In more complicated
models, an error index is needed which combines the reference mode based infor-

mation from several 'real world' graphs.
- 2.Model formulation

Model formulation begins from the causal relationships matrix of Figure 4. Each
matrix row is a general description of some model equation. The first row shows,
for example, that INV=f(INV,PCR,SAL). The 'ones' underlined 1nd1cate additions to

the 'real world' version.

The production starting rate PSR will now be defined as a set from which the
comDuter has to select the right subset. For purposes of exposition, a transformation
to an open-loop, hierarchical structure will be made. The decision tree thus received
looks similar to a Bill of Material in mass-production but there is one fundamental
difference: Instead of minimizing assembly lead time with a fixed product structure,

a variable mode! structure will be used keeping the solution interval DT fixed

Any SD equation can be disaggregated to its components in order show the hierarchy
of causal relationships. We see from Figure 4, for example, that PSR= f(BCOR,AVP,IPIC)
and BCOR=f(BLG,TBLG). This recursive procedure produced the structure of PSR,
given in Figure 5. Hierarchical levels (hot the same as level variables in SD) w

defined in terms of causal distance from the decision rule.
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CAUSAL DISTANCE

Causal distance:

0 PSR
p [
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3 Aue ACOR AUS INP ACOR BCOR
3 TBLE‘ LG
s S ACOR

Figure 5. The PSR-equation in the decision tree vform‘

Five decision parameters (Dl,...,D5), indicated with valves, were added t6 the model
to give structural variety for the optimization process. A high- ecHelon valve can
cancel out the effects of a low echelon valve. For example, D3 mlght have any

value when D1 has the value of zero.

Use of decision parameters transforms the optimization process into multi-objective
optimization within a single-objective objective function. For example, target back-
log TBLG is a linear combination of average production AVP and Average Customer
Order Rate ACOR:

TBLG.K=D3*AVP.K+(1-D3)*ACOR.K , where 0€D34]

Decision parameter D3 is a variable in the optimization process and thus receives

some value which corresponds to the minimum regret from the over-all viewpoint.

There are three target values for the producer: Target Backlog TBLG, Indicated
Production INP, and Target In-Process Inventory TIPL Each of these terms should
be collected from weighted components, deriving from demand and supplv. The
decision parameters D3, D4 and D5 are there for this purpose. The decision
parameters DIl and D2 assess proportional controllers. Thus both economic and

technical viewpoint were needed in the transient hypothesis formulation.
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Figures 4 and 5 did not define the form of causal relationships. This is a question
that should at this point be discussed. In the 'real world' model, we assumed that
indic'atéd production was a linear function of order backlog. However the corre-
s‘pondingvequa'tion is based only on the supplier's viewpoint and needs reformulation.
Dec.is‘ion parameter D5 provides the opportunity of adding another component to
the decision rule, namely that of average incoming order rate ACOR and a px:opor—
tional control term BCOR. In this way, we have been able to include a demand-
relat‘ed_term,bAVerage Production Rate AVP.

The backlog target TBLG is now assumed to be a non-linear function of average
material flow in the customer-procucer network. The average material flow is
being ' treated as a linear combination of Average Production AVP and Average
Customer Order Rate ACOR. The linear form of INP is thus a simplification of

‘the assumed non-linearity. Figure 6 shows the relationships described above.

BLG OR TBLG
‘ [§

400 4

300 4 ' \

TELG=f (AUP,ACOR)

BLG=F (INY)

. . —» INP or D3#AUP+(1-D3)*ACOR
50 100 150 '

- Figure 6. The relationship between BLG and TBLG

. The tfansient hypothesis describes the brocess where the computer tries to find

v.target values for certain optimization parameters. The objective function OBJ4 is

'_én example o>f a case where a reference graph but no reference point was used.

However the objective function OBJ5 also contained a reference point. Figure 7

"'- shows that the reference point was needed to push the initial decision parameter
values close to their target values.



Decision ' ' Final v alue
parameter Initial value Target value
oeJ4 0BJsS

D1 i o 510 . 030

Dz 1 Q .244 .Q30

D3 ) no effect . 997 8927

D4 .3 no effect .. =270 Q10

DS .=

1 i | .980
Figure 7. A model fitting experhnent:

The reference point effect can also be seen from Figure 8. It shows the target
curves for PSR and INV, generated by OBIJ3, as well as the curves produced with
the objective functions OBJ4 and OBJ5. From the standpoint of model behavior,
there was no difference between the target values and and OBJ5-produced values.This
clearly shows that the differences between the corresponding decision parameter
values are not significant. Therefore, DI, D2 and D5 can be rounded off to the

nearest integers.
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Figure S, Curve fitting with and without a reference point



Figure 9 shows statistical information, collected from the OBJ5 run. We see from

9

the figure that the exact values of the decision parameters we were looking for

were found by iteration 22.This suggests that the range of objective function values

between 259 and 192 produced practically the same model behavior.The correspond-

ing: parameter ranges indicate the magnitude of pa_raméter tolerance that is
allowable for rounding off purposes. ‘ '
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Figur= 9. Statistical information from OB3J5 optimizatior
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IV. Concluding remarks

Finally we shall examine ‘very briefly the position of the transient hypothesis *

relation to other concepts, as shown in Figure 10.

GOALS

CO8TS OBJECTIVES

\;;;;\\‘* STRUCTURE’j;;;;;/

DEMAND BEHAVIOR

Figure 10. Relationship of some main concepts
" Each triangle has a specific meaning:

No.i : classical .SD‘ approach

No.2 : criteria available for judging the correctness of the model
'NQ.B : tbp management viewpoint

‘No.4 : functional management viewpoint.

No.5 : automation approach

The ‘transient hypothesis relates to that aspect of an automation approach where
model struétur»‘e is derived automatically from cost and demand information. The
output from. the transient H:vpothesis stage is likely to require simplification. Com-
puter software has been developed for that purpose at the Helsinki School of Econo-

mics.

Many outsiders claim that SD is regarded with the awe of a religion. Probably the
main reason for this impression is the strict adherence by system dynamists to
certain fixed postulates which are not always generally accepted. Unfortunately,
experience shows that "selling" a religion is very hard work. Perhaps this fact is
the most fundamental point that favours the optimization approach in SD. 'Dynam-
ic' hypothesis is just one example of its use and of the extra freedom tc be

gained when old beliefs are being treated as special cases of more general situatiorr
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NOTE

NOTE ORDINARY EGUATIONS

NOTE

INV.K=INV.J+DT# (PCR. JK-SAL.JK)
TINV.K=TIW®#AVS.K

AVS.K=AVS. J+DT/TASH*(SAL . JK~AVS. J)
BLG.K=BLG.J+DT# (COR.JK-PSR.JK)
TBLG.K=D3#TABHL(BTAB,AVP.K,50,150,25)+
(1-D3)#TABHL(BTAB,ACOR.K,50,150,25)
BTAB=200/265/300/325/340
ECOR.K=(TBLG.K-BLG.K)/BCT
INP.K=DS#BLG.K/TBW+(1-DS)#(ACOR.K+(TBLG.K-BLG.K)/BCT)
AUP . K=AUP.J+DT/PAT#(INP.J-AVUP.J)
PSR.KL=AVP.K+STEP(1,10)#(D1#BCOR.K+D2*IPIC.K)
PCR.KL=DELAY3(PSR.JK.PLT)

IPIC.K=(TIPI.K-IPI.K)/ICT
IPI.K=IPI.J+DT#(PSR.JK-PCR.JK}

IPI=PLT#AVS
TIPI.K=TIP#(D4#AVS . K+(1~-D4)*INP.K)
COR.KL=AVS . K+A1#(B1#TIC+(1~B1)#TINV.K-INV.K)
/TAI+A2# (TBW*AVS . K-BLG.K) /TAB
ACOR.K=ACOR. J+DT/TAOR* (COR. JK-ACOR. J)
ACOR=AVS
SAL.KL=100+STEP(25,10)

NOTE

NOTE INITIAL CONDITIONS

NOTE

N INU=TINY

N AVS=100

N BLG=300

N AVP=100

NOTE _ :

NOTE DECISION PARAMETERS

NOTE

Al=.41

A2=1

B1=.038

Di=1 "

p2=1

p3=.5

D4=.5

DS=.S

NOTE

NOTE ORDINARY PARAMETERS

NOTE

TAS=2

TBW=3

PAT=2

PLT=3

TAI=3

TAB=4

TAOR=3

TIW=S

TIC=500

BCT=5

TIP=4

ICT=3 "
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108
110
111
112
113

114
115
116
117
118
119

NOTE
NOTE OBJECTIVE FUNCTIONS
NOTE
0BX1. K=(TINFAUS . K-INV K)# (TIW#AUS . K~INV.K) -
0BJ1.K=0BJ1.J+DT#0BX1.J
0BJ1=0
INUX.K=INU L J+DT# CINV.J=INUX. J)
INUX=500
DBXZ.K=100#(INU.K—INUX.K)*(INU.K—INUX.K)
0B J2.K=0842.J+DT#0OBXZ.J
0B JZ=0
OBJ3.K=0BJ1.K+0BJZ.K
GUIDE.K=TABHL(PSRT,TIME.K,0,100,3)
PSRT=3#100/125.94/148.02/143.06/134.18/
178.24/125.53/124,70/124.65/124.79/124.91/8%#12Z5
DEV .K=GUIDE.K~-PSR.KL
ERRZ.K=DEV.K#DEV.K
0BJ4.K=0BJ4.J+DT*ERRZ.J
0BJ4=0
IDEV.K=625-INV.K
0BJS.K=0BJ4.K+IDEV.K#IDEV.K
NOTE
NOTE OUTPUT EGUATIONS
NOTE
PRINT PSR
PLOT INU=#(300,700)/PSR=+(100,130)
C DT=0.5
C LENGTH=100
C PRTPER=S
C PLTPER=1
RUN
NOTE
NOTE MODEL DOCUMENTATION '
NOTE '
AUP=(U/W) AVERAGE PRODUCTION
AVS=(U/W) AVERAGE SALES
BLG=(U) BACKLOG
COR=(U/W) CUSTOMER ORDER RATE
INP=(U/W) INDICATED PROUODUCTION
INU=(U) INVENTORY
PAT=(W) PRODUCTION AVERAGING TIME
PCR=(U/W) PRODUCTION COMPLETION RATE
PLT=(W) PRODUCTION LEAD TIME
PSR=(U/W) PRODUCTION STARTING RATE
SAL=(U/W) SALES
TAB=(W) TIME TO AVERAGE BACKLOG
TAI=(W) TIME TO AVERAGE INVENTORY
TAS=(W) TIME TO AVERAGE SALES
TBW= (W} BACKLOG TARGET IN WEEKS
TIC=(U) TARGET INVENTORY (IF CONSTANT)
TINV=(U) TARGET INVENTORY (IF VARIABLE)
OTE NEW SYMBOLS
BCOR=(U/W) BACKLOG CORRECTION
BCT=(W) BACKLOG CORRECTION TIME

ICT=(W) IN-PROCESS INVENTORY CORRECTION TIME
IPI=(W) IN-PROCESS INVENTORY

IPIC=(U/W) IN-PROCESS INVENTORY CORRECTION
TAOR=(W} TIME TO AVERAGE CUSTOMER ORDER RATE
TELG=(MW} TARGET BACKLOG

TIP=(W) IN-PROCESS INVENTORY TARGET IN WEEKS
TIPI=(U) TARGET IN~PROCESS INVENTORY
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1.

2.

3.

CLASS II DOCUMENTATION STANDARDS
FOR SIMULATION MODELS

ACCESS TO MODEL:

Name of Model: Dynamic or 'dynamic' hvpothesis?

Name and current address of the senior technical Dr.Raimo Keloharju, Helsinki
person responsible for the model's construction: SCROOL O LCONOMICS, RUuNeb.K.

Who funded the model development? - VUTUD RelsInR1To

In what language is the program written? Dysmap

On what computer system__is thé model currently
implemented? EP=-3C00/11

What is the maxirmum memory required to store and
execute the program? %6 Kb {8bit)

What is the length of time required for one typical

run of the model? 100 sec.(cpu) in simulation, 300 sec.(cpu) in optimization

Is there a detailed user's manual for the model? No, but for the Dysmap-Optimizer

there 18,

PURPGSE OF THE MODEL:

For what individual or institution was the model

designed? Tor the 1951 SD Research Conference
H‘hft were the basic variables included in the model?
-nveasory, szles, order backlog, production starting rate, customer

, Sraer raze

Over what tf""e period is the model supposed to provide useful information on real
world behavior?  over two years - ‘

Was the model intended to serve as the basis of:

an academic exercise designed to test the implications of a set
of assumptions or to see if a specific theory would explain his-
torical behavior )

cormunication with others about the nature and implications of an
important set of interactions .

projecting the general behavioral tendencies of the real Syste‘

predicting the value of some system element (s) at some futare
point in time .

MODEL SPECIFICATION AND THEORETICAL JUSTIFICATION: °

Provide two diagrams illustrating the extreme behavior modes exhibited by t-;he ma-jor

model elements: See Fig.8 in the paper

T

‘If they are not included in the body of the paper indficate where the reader

may find:
a model boundary diagram that indicates the. important
endogenous, exogencus and excluded variables

a causal influence diagram, a flow diagram, the com-
puter program and definitions of the program elements

Is the model composed of:
simultaneous equations
difference or differential equations X
procedural instructions

Is the model deterministic X or stochastic
or discrete

continuous

4. DATA ACQUISITION

What were the primary sources for the data and theories inco:_'potated in the model?

Data anly illustratiwve.

Theory

What percent of the coefficients of the model were obtained from:

measurements of physical systems

inference from social survey data
econometric analyses

expert judgment

the analyst's intuition 100 %

What was the general quality of the data?

5. ' PARAMETER ESTIMATION

6.

If they are not given in the publication, where may the reader obtainidet?iled infor-
mation on the data transformations, statistical techniques, data ac.:quxsi':mn prc::e-.
dures, and results of the tests of fit and significance used in building and anaiyzir

the model? =

MODEL PERFORMANCE AND TESTING
Over what period was the model's behavior compared with historical data?
100 weeks
What other tests were employed to gauge the confidence deserved by the model?
decision parameter values, objective function value




162

“Where may the reader obtain a detailed discussion of the prediction errors and the
dynamic properties of the model? M
Tre dynamic properties of.the model depend on the decision
rarameter values. See the paper.
7. APPLICATIONS

What other reports are based upon the model?

Name any analysts outside the parent group that have implemented the model on anothexr
computer system. -

List any reports or publicationa that may have resulted from an avaluation of the
model by an outside source. -

Has any decision maker responded to the recormendations derived from the model?

will there be any further modifications or documentation of the model? yes
Where may information on these be obtained? _from the author




