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STATISTICAL TOOLS
FOR SYSTEM DYNAMICS

by

David W, Peterson
Massachusetts Institute of Technology
Cambridge, Massachusetis 02139, USA

ABSTRACT

For questions of parameter choice and validity, the system dynamicist has
usually relied on "manual examination of the detailed structure of the
model., Numerical data may be used in the process, but only where the im-
plications are obvious by insgpection,

This paper describes practical "automatic" tools to aid both the builder
and the evaluator of a system dynamics model. The tools relate the model
to available data; they are helpful in answering such questions as:

1. What are the most likely values of unknown parameters, given
available data?

2. Which structural formulations are most likely?

3. Is the model consistent with all available data?

4. Which data points are likely to be wrong?

5. What is the most likely state of the system at & given time?

6. - To what degree of accuracy can model-computed forecasts be trusted?
The tools are based on full-information, maximum-likelihood via.optimal

filtering. They operate correctly in an environment of noisy data, missing
data points, unmeasured variables, and unknown inputs,
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I. New Capabilities for System Dymamics

For questions of parameter choilce and validity, the system dynamicist
has usually relied on "manual” examination of the detailed structure of the
modél. The realism of both parameter values and model structure is assessed
and improved by repeated simulation experiments. If a simulation experiment
reveals spmething surprising or wrong, the modeler asks why, seeks the answer
by examining the model structure, and tests the answer by new simulation?.
This informal procedure of model inspection and simulatioﬁ is one of the great
strengths of the system dynamics methodology. If the modeler proceeds with
diligence and thoroughness, the model is greatly improved over "first cut"
form, and the modeler gains a deep understanding of the system being modeled.

Numerical data contribute to the process, but usually only when the im-
plications are obvious by inspection. While econometric methods are sometimes
employed by system dynamicists (see Hamilton 1969 and Runge.1976 for examples),
such use 1s infrequent. The methods often restrict the form and content of
a model according to whatever data is available. Furthermore, system dynam-
icists have sometimes doubted the validity of standard econometric tools.
For example, Senge (1974) shows that generalized least~squares estimation
(GLS) may give results which are both wrong and misleading when used in the
context of a system dynamics model. .

This paper describes a relatively new set of statistical tools which
permit the system dynamicist to make full use of numerical data. The tools
relate the model to all relevant data, even if the data is incomplete, noisy,
and marred by occasional "badidata"ipoints. The tools work with models in
which most of the variables are unmeasuéed,'and for cases of unmeasured exo-
genous inputs. The tools work correctly under the circuﬁstances examined by

Senge, and are helpful in answering such questions as:
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1. What are the most likely values of unknown parameters, given
available data?

2. Which structural formulations are most likely?

3. 1Is the model consistent with all available data?

4, wﬁich data points are likely to be wrong?

5. What is the most likely state of the system at a given time?

6. To what degree of accuraéy can model-computed forecasts be trusted?

The tools are based on the method of full-information, maximum-likeli-
hood via optimal filtering (FIMLOF), as discussed in Schweppe (1973) and
Peterson (1975). The mathematics of FIMLOF are stated and referenced in this
paper, but the formal proofs will not be repeated here. Instead, the dynamic
ideas behind the methods are emphasized here, and related bcth to alternate
methods and to practices in system dynamics. The tools have also been
implemented in a computer program, the General Purpose System Identifier

and Evaluator (GPSIE), as described in Peterson (1974).

A. Parameter Estimation
The FIMLOF method of parameter estimation is best understood as an
optimum compromise between two less satisfactory extremes. One extreme
might be callea "naive simulation” (NS), and the other extreme is the
standard econometric tool, ordinary least-squares (OLS). To make the pre-
sentation clear, this discussion will focus on an extremely cimple syctem;
but the method also succeeds with nonlinear, multi-state-variable systems.
Consider the system:
X(t) = A *X (£ - 1) + W(t)
Z(t) = X(t) + v(t)
where X is the state of the system, Z are measurements of X, A is an unknown

parameter, W(t) is driving noise ("equation error"), and V(t) is measurement
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noise ("errors in the variables").

First, take the case where W(t) = 0 and V(t) = 0, which is equivalent
to perfect measurement of a deterministic system. From the data given iq
Figure 1, in this nolse~free case, the parameter A can be estimated by
simply taking the ratio between two successive values of Z(t). However,
the simple example can help to illustrate more indirect methods, which

succeed not only in the noise-free case, but also in more complicated sit-~

uations. The essence of the more indirect methods, which lead to FIMLOF, -
- simulated data Z(t)
is to (1) guess a value of A and simulate the system, (2) measure the error ’
A .
between the simulated data Z(t) and the actual data Z(t), and (3) repeat the Actual Data Z{t) and
Simulated Data 2(t) simulation trajectory

process, making new guesses of A in-an orderly fashion, until a value of A
is found to minimize the error, The estimate of A is then chosen as the

value which minimizes the error between actual and simulated data.

The differences among NS, OLS, and FIMLOF lie mainly in how the simu- —_—
lation is performed, and in the measure of the error. T
data Z(t)
Maive Simulation (NS)
residuals r{t)
In the naive simulation method, the model is initialized at the
first data points and simulated without further reference to the data:
A A ) 1 1
= * - Ll ¥ T L)
X(t) = A * X(n-1) ] 1 2 3 4
A A . . ’
Z(t) = X(t) . Time t

In general, the simulated values will ndt coincide with the data; the
differences are called residuals:
’ A
r(e) = z(t) - 2(x) .

The NS sum of squared residuals, also called the loss function, 1s_ denoted

Figure 1: Completely Deterministic Data, with Naive-
- Simulation Estimation (NS).

as J:

L2
3= 3 .
=1
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In the nonpathological case of Figure 1, the error will be zero if A
is guessed correctly. The modeler may guess close to the right A value
more efficiently and methodically by using a good "hill climbing" algorithml,
but the essential idea is to adjust the guess of A until no smaller error
can be found.

However, 1f the system being modeled has equation noise W(t) # 0, then

. ) . / actual data 2{t}

the naive simulation methoed may give minimum error J for a completely wrong
value of A, since the real system may "drift" away from the deterministic ) “an
trajectory, as shown, for example, by Forrester (Appendix K, 1961). 1In ‘Actual Data Z(t) and .,

Simulated Data Z(t)
fact, Peterson (1976) has shown that, for noise-driven systems, the naive '

simulated data Z{t)

gimulation method in effect ignores most of the data.

residuals r{t)

Ordinary Least Squares (OLS)

When driving noise W(t) is present (but V(t) is absent), the modeler
can in general obtain better estimates of A by reinitializing the system at
each data point, and then applying the same squared—-reéidual error function

J as in the naive simulation method. The new iteration is called ordinary .

least-squares (OLS):

Q(c)'= A% 2(t-1) n , I . !

Y

20 =R

i

as illustrated in Figure 2. The dots are the data Z(t), the dashed lines
are the simulation trajectories between data points, and the vertical bars

are the residuals. Whenever the simulation reaches a data-sample time, °*

the system is reinitialized, so that each segment of the simulation begins Figul‘e2: NOiSE‘Driven System and Accurate Data, with
on a data point. . Ol’dinary | east Squares Estimation (O LS).

lAlso called unconstrained optimization. See Murray (1972) for examples.
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Wonnacott (1970) has shown that the OLS method tends toward a good
estimate of A, so long as V(t) = 0, But the method breaks down when measure-
ment errors can lead to grossly inaccurate estimates of parameters in a typical
system dynamics model. The intuitive reason for the failure is as follows.

The motivation for reinitializing the model at eéch data point is to keep
the simulation close to the true state of the system, so that any divergence
in behavior, as measured by the residuals, would be meaningful. But reini-
tailiztion in the presence of noisy data 1s unlikely to keep tﬂe simulated
state close to the real state. Large residuals may emerge from even a per-

fect model under OLS.

Full-Tnformation Maximm Likelihood (FIMLOF)
The essence of FIMLOF is to reinitialize the system at each data point,
at the value of X(t) where the system is most likely to be given all avail~-
" able data. To do so, the simulation must compute not only the predicted
state at each data point, but also the size of‘the expected error (standard
deviation) of the predicted state. Therefore, FIMLOF uses the iteration:
/)‘((t/t-l) =A% S(\(t-llt—l)
A A
Z{t/t~1) = X(t/t-1),
where &(t/t—l) is the most likely value of X(t), given all information
through time t-1, Q(t—l/t—l) is the most likely value of X(t-l), given the
came Information, and Q(t/t-l) is the best guess of the next measurement
Z{t), given all the previous data Z(0) -*°-- Z(t-1). _

The simulation is then updated at ﬁ(t/t), which is defined as the
wost likely value of X(t), given all information through time t. This
information is embodied in Z(t), in Q(t/t—l). ard in the variances of these
two quantities. The variance of Z(t) is simply the variance of the procesas

A
V(t). The variance of X(t/t-1) 1is automatically derived from the variances
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cf the pfocesses V(t) and W(t), from the variance of the puess of the initial-
conditigns, Q(O/O), and from the structure of the model, The computation
cf the variances is not detalled here; the equations which compute them
constitute én “optimal filter," which is documented by Schweppe (1973)
and Kalman (1960), and presented in Appendix A of this paper.

Variances are employed in FIMLOF to avoid the pitfalls observed im
OLS -and NS. The process is illustrated in Flgure 3. As in NS and OLS, the
initial conditions of the model are based on the first data point. The
system is simulated to the time of the first data point, and the first
residual 1s computed as

/0y = 2(1) - /o).

So far, the process has been the same as for NS and OLS. The difference

.lies in how the model is reinitialized at the data point Z(1). Instead of

leaving the model state at 3(1/0), as in NS, or adjusting tle model state
complegely to match Z(1), as in OLS, FIMLOF reinitializes the model to a
compromise point somewhere between Q(I/O) and Z(1). The compromise is
based on the variances pf Q(l/O) and Z(1). 1f the variance of Z(1) is
large (noisy measurements), but the variance of 9(1/0) is small (little
driving noise W(t)), then the reinitialization will be close to %(1/0), as
in NS. 1If, at the other extreme, tte variance of Z(1) is small, but tte
variance of ?(1/0) is large (accurate data, but highly uncertain model),
then the model will be reinitialized close to Z(1l), as in OLS. 1In general,
the feinitialization in FIMLOF will bec somewhere between the two extremes,

at a.poiht always chosen as the most likely value of the model state, given

" the available data. Schweppe (1973) has shown that, with this optimal re-

initialization (called "optimal filtering" in control theory) and a loss
function based on the residuals r(t/t-1), parameter estimates will be those

that are most likely, given all the information contained in the data and



Actual Data Z{1),
Simulated Data Z(t/t-1),
and Estimated State X(t/t}

\ Za/o)
X(o/o) = (o)
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X(a/4)

Jtara) (=Kt3/2))

-

Y

-t

Time t

Figure 3: Noise-Driven System and Noisy Data, with

Full Information Maximum-Likelihood
Estimation (FIMLOF).
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model structure. In fact, the FIMLOF loss function (See Appendix A) is the
negative logarithm of the likelihood (probability) that the observed data

could ﬁave been produced by the assumed model (including the guesse; of the
parameters). By making astute guesses of the parameters (again, automatically,
according to a "hill climbing" algorithm, as in Murray 1972), the modeler

arrives at the desired "maximum likelihood" estimated.

Feasibility: Comparison with Senge's Results

The likelihood computation is exact only in the case of linear systems
with Gaussian noise W(t) and V(t). But the approximate likelihoods computed
by nonlinear filters, as in the GPSIE software package, are remarkably accurate.
Experiments on nonlinear engineering models by Moore (1972), Mehra (1973),
and Arthur (1976) have indicated that nonlinearities are not a serious problem.

FIMLOT (as implemenied in GPSIE) has also been tested on system dynamics
models of social systems. Figure 4 summarizes the results of one such experi-
ment, chosen to facilitate comparison with Senge (1974). Senge estimated
parameters from noisy simulation data generated. by a nonlinear, dynamic model
of market growth, as published by Forrester (1968). The model consists of
nine dynamic difference equétions (defining nine "level" variables). Senge
simulated the model, using random-number generators to introduce both equation
errors and measurement errors in different amounts. In the particular experi-
ment compared below, Senge introduced equation errors ranging from 67 to 607
of the mean of the endogenous variables, and obtained excellent estimates of
the 13 system parameters, using OLS and GLS. Howéver, when Senge introduced
10% wmeasurement error, he obtained large errors in the parameter estimates.
Figure 4 shows the results Senge obtained, compared with the estimates ob-
tained with the FIMLOF software package GPSIE under the same conditions. The

results indicate that FIMLOF techniques, as implemerted in GPSIE, may yield



Parameter
Name

SEM

SED1
SED2
SED3
PCF1
PCF2
CEF1
CEF2
CEF3
CEF4
DRAT

SAT

True

Value
400
-.0281
~.0295
.00228
.61782
~.13244
~-.0698
.12442
-.08138
.027704
1

20
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GPSIE OLS
Estimate Estimate
392 4349
-.029 -.430
-.0295 .096
.00228 ~.0074
.615 3.7117
-.132 ~. 74891
-.0693 .03966
L1245 ~.14609
~.0813 .13953
02704 ~.03144
.97 1.3
19.85 18.5
Figure 4@

Comparison of Estimation Techniques for Ninth-Order

Nonlinear System with Errors in Variable.
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acecurate resuits, even in the presence of system nonlinearities and measure-
ment error which may cause difficulties with simpler eastimation techniques.

In general, for nonlinear models of the system dynamics type, the
approximations involved in FIMLOF cause errors mo more serious than those
dﬁe to other approximations in computer simulation, such as numerical-
1ﬁtegration eftor and round—-off error.

Alihough seemingly and indirect, the repeated guess-and-simulate itera-
tion of FIMLOF allows great flexibility. For example, nowhere does the
method require that all the state variables be measured, or the availability
of data at each time step, or even that the data be distributed at constant
intervals. 1If a data point is missing, for example, the simulation simply
continues to the time of the next valid data point. Residuals are computed
only at data points, not necessarily at all model time-steps.

Similarly, the mathematics of FIMLOF can deal with unknown (unmeasured)
exogenous inputs, cross-sectional data, short data series, non-white noise,
ana such indirect measurements as yearly summations, aﬁerages, and functions
of mulgiple state varlables.

The alert.reader may object that FIMLOF computations require the vari-
ances of measurement errors V{t) and equation errors W(t), which are seldom
known with confidence. Variances can be dealt with by including them in the
list of paiameters to be estimated. In fact, in FIMLOF, parameters inherently
may enter the model in any nonlinear or indirect way.

The features of the FIMLOF method are summarized in Figure 5. TIMLOF is

compatible with the characteristics commonly found in system dynamics models.

B. ' Structural Estimation
The preceding observations on parameters and nonlinear systems raise

other interesting possibilities. 1In fact, for nonlinear systems, we must
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FIMLOF (as implemented in GPSIE) Operates Under Conditions of:

Nonlinearities in model dynamilcs

Nonlinear measurement functions

Measurement error (errors in variables)

Mixed sampling 1ntervals (can, for example, estimate
a weekly model, using monthly and yearly data)
Missing data (without sacrificing other data at the
same sample time)

Models with unmeasured endogenous variables
Cross—sectional, time series mixed data

Unknown characteristics of equation errors and

measurement noise.

Figure 5:

Applicability of FIMLOF and GPSIE.
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' as opposed to "parameter.”" For time-invariant

redefine "structure,'
linear systems, the distinction is clear: the system must (by definition)
take the form

x(n) = Ag(h—l) + Bu(n) + w(n)
where A and B are constant watrices, x(n) is the state vector at time n,

u(n) is a vector of known lnputs, and w(n) is a white, normal process of mean

0 and covariance Q. In this case, the parameters are simply the constant

‘coefficients of the matrices A,B, and Q. A similar definition can be made

for systems which are linear in the parameters. For example, in the system
y=Xb

where y is a vector of outputs, X is a matrix of variables which may be func-

tions of exogenous inputs and of lagged values of y; b 1s defined as the

vector or parameters.

General nonlinear systems, however, will require a more general de-
finition of parameters:

A parameter in a nonlinear system is a constant exogenous input
to the system.

By this definition, a parameter in a nonlinear system may enter the
system in any nonlinear fashion. The parameter may be known or unknown,
but it is always a constant whose value- is not determined by the rest of
the system.

This seemingly straightforward definition has the following implica-

tion: In nonlinear systems, parameters may take on qualities'usually

associated with structure. For example, consider the system
x(t) = 8f(x(t~-1)) + (1-9)glx(t-1)) .
By any reasonable definition, 6 would be considered ‘a parameter in the
equation. But O determines the structure of the system. If 8 = 0, then

the system has the structure determined by the function £ ; if 8 = 1, then
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the system structure is determined by the function g.

Therefore, care must be taken in applying the usual connotations to the
terms "structure” and "parameter" when dealing with nonlinear systems. By
model building such as the example just 1llustrated, the modeler may éstimate~
parameters which de facto result in the estimation of structure. »

The. estimation of structure (as in estimating @ in the above system) may
be thought of as a kind of continuoua hypothesis test. Tﬁe maximum-1likelihood
value of 6 may be thought of as selecting the most likely structure from the
range of structures implied in the equation. In additior, completely separate
models may be compared by computing the likelihood of éach with respect to
the same data base.

Neither parameters nor structure can be usefully estimated from mere
numerical data and thin air. Estimation always entails a choice from a
range of alternatives. A well-hypothesized model defiAes ; range of plausible
alternatives consistent with the purposes of the study at hand. The ability
to estimate structu;e~1ncteases, rather than decreases, the role of experience,

logic, and theory in model building.

C. Validity and Consistency Tests

The essence of validity is that the model be consistent with all avail-
able information, in the context of the purpose of -the model. The automatic
consistency tests related to FIMLOF represent a subset of this general notion

of validity. The FIMLOF-based tests e the consistercy of the model with

available numerical data. However, qualitative knowledge can usually be
quantified to some approximation, and FIMLOF can make use of approximate
data.

The consistency tests of FIMLOF comé in two kinds. First, the likeli-
hood evaluations for each set of parameter guesses provide information, and,

second, the optimal filter itself provides several internal consistency

) - 858 -
measures. Most of these consistency tests are based on mathematical deriva-

tions of proprieties which the likelihood evaluations and filter outputs must

have 1f the model is an accurate representation of the real system which

actually produced the data. If the properties are not observed in the FIMLOF

output, then there 1ls some inconsistency between model and data.

Use of the Likelihood Surface

The "loss function" computed in FIMLOF is the negative natural logarithm
of the likglihood that the data could have been generated by the model. For
each different model or set of parameter guesses, the same data will yield,
in general, a different "log likelihood." Therefore, the data and model
‘define ‘a surface over the space of all possible parameter values. One pro-
perty of tﬁe log likelihood surface is especially useful in interpreting
parameter estimates. At the global maximum of the log likelihood surface,
the curvature of tke surface is a measure of the quantity of information
about the unknown parameters contained in the data. In the extreme, if the
likelihood surface is flat (so that all parameter values are equally likely),
then there is no information in the data with respect to the model and para-
meters being eBtiméted. Similarly, if the surface surves sharply downward
from the maximum, then the estimates are highly precise, and the data (how-

ever noisy) contain a great deal of information about the model. More pre-

‘cisely, the second derivative of the log likelihood surface with respect to

parameter A is the variance of the uncertainty in the estimate of A.

Confidence Tests from the Optimal Filter

‘ The optimal fllter computes not only the residuals r(t/t-1), but also

_what the standard deviation of the residuals should be, if the model is

correct. The.residuals, when normalized by their theoretical standard
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deviations, can be shown (Schweppe, 1973) to have two properties. First,
the normalized residuals should have a constant varlance of one; second,
the sequence of residuals should be a white process. Since these proper-
ties of the residuals process are not employed directly in maximizing thev
log likelihood, they provide an independent test of model validity. Further-
more, experience shows that residual-based tests are sensitive to small
errors in model ;pecification.
The two theoretical properties of the residuals, whigeness and unit
variance, provide two kinds of consistency tests:
First, the whiteness may be tested by computing correlation measures
of the normalized residuals. Each residual (in the case of multiple-
dimensional measurements) should have a correlation coefficient of one with
respect to itself, zero serial correlation with respect to lagged values
of itself, and zero cross correlation with all other residual processes.
(See Appendix A for mathematical definitions.) The correlation test of
the residuals not only indicates whether the model is consistent with the
data; if the test fails, it may also reveal what is wrong. For example,
the pattern of serial correlation coefficients may reveal the First-order
time constant assoclated with a delay missing from the model structure.
Second, the theoretical unit variance of the residual processeé pro-
vides a test of internal consistency. The log-likelihood fupction»consists
of two terms: (1) a sum-of-squared residuals term (SUMSQ), which is analogous
to the OLS loss function; and (2) a term which is independent of the size
of the residuals. The expected magnitude and standard deviation of the SUMSQ
term at the true parameter values can be predicted ahead of time. If the
actual SUMSQ differs from the predictdd range, then either the model is
inconsistent with the data, or the global waximum of the'loé likelihood

function has not yet been found.
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D. Detection of Bad Data

The preceding discussion explained how noisy, approximate data can
be used to help estimate and evaluate system structures. But most collections
of data contain some poipts so éuch in error as to be best deleted. Such
"bad data" points may arise from typographical errors, improper accounting
procedures, and other gross malfunctions of data collection. Instead of con-
taining useful information about the system, the bad data points serve only
to mislead.

The FIMLOF methodology includes convenient techniques for detecting
and isolating bad data. The basic idea behind the techniques is to look for
residuals which are clearly too large. The obvious difficulty is to define
"too big." .The answer is provided by the optimal filter, which computes
the expected standard deviation of each resldual, under the assumption that
the model and data are consistent. As a matter of practicality, a bad data
point will create large residvals even if the model is still scmewhat approxi-
mate. ’Therefore, even if the model has ﬁeen estimated using data which
contains bad data points, a residual more than four or five standard devia~
tions away from its expected value can be taken to indicate a bad data point.

A complication arises when, as is usual, more thar one varible Is
measured at the same time. In such a case, a large residual still reveals
the presence of a bad data point, but does not necessarily indicate which
of the several measurements is at fault. However, the optimal filter of
the FIMLOF method provides the information required to decide which component
is in error. From the varlances and covariances by the filter, the evaluation
can compute "normalized updated" residuals (see Peterson, 1975) which pin-
point the bad data points in both time and space.

Although bad data can often he spotted by visually scanming graphed

data, the FIMLOF techniques are useful for two reasons. First, the techniques
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can be completely automated, allowing the thorough checking of large data
files. Second, bad data is not always readily apparent, even when the data
is presented in graphical form. The '"wrongness" of a data point 1s often
seen only in the context of the dynamic structure behind the data, as well
as measurements of other variables. Preliminary experience (Peterson, 1975)
indicates that bad data may be uncovered quickly using thé FIMLOF methods!
even in data files which have been manually inspected for er;ors.
E. Estimation of the System State

A useful by-product of the optimal filter is the computation of the
most likely state of the system at a given time. The estimated state can be
used to initialize the system for forecasting. The estimated stéte may
also yield insight, or aid in decision-making. For example, a decision-
maker would like to know which inputs are limiting a production process,
or in which region of a nonlinear function the system is operating. The
filter provides not only an estimate of the true state of the system, but
also gives confidence bounds, by way of the variances and covariances of
the state-variable estimates. Such computations can also be vaildly
continued into the future, as discussed below.

F. Confidence Bounds for Forecasts

Simulation models are often used to predict the future evolution of a

gystem. Usually, the model is intialized at some approximation of present
conditions, and the (deterministic) simulated trajectory is taken as a best
guess of the Future. Such a forecast may be inaccurate for three reasons.
First, of course, the model structure way be inaccurate. But even if the
model is "perfect," two sources of uncertainty may bring abcut inaccurate
forecasting. To the extent that the real system is driven by uncertain
processes (events modeled as random), the future evolution of the real

system 1s likely to drift away from any computed trajectory, thereby expand-
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ing thé frequency and magnitude of errors in the forecast. Finally, there

is the difficulty of declding what initial conditions to use for the fore-
casting simulation. Since many state variables in a model may be unmeasured,
the most likély present state of the system may not be obvious from a casual
inspection of the data.

Forrester (1961, Appendix K) discusses these ideas gualitatively,
illustrating the interaction among model accuracy, knowledge of the present
state of the real system, and forecast accuracy. The FIMLOF techniques
allow these factors to be assessed quantitatively. Forecasts computed by
the filter include n;t only the “expected” future trajectory of the system,
but’alao confidence bounds on the trajectory. The "initial conditions" of
confi&ence béunds are derived froﬁ the computed variance of the previously
explained present state estimate. The filter than computes the a priori
variance of future state estimates as a function of the initial variance,
the ﬁodel structure, and the variances of the random system inputs.

The cpnfi&ence baounds on the forecast clearly show to what extent,
and how far into the future, a given model may be expected to yield accurate
predictions. 1In many social systems, the confidence bounds diverge rapidly
as the simulation extends farther ahead in time. The timing and severity
of the divergence will depend on the state of the model, its structural
accuracy, the nature of the structure, the accuracy of the initial conditions,

and the severity of random inputs to the system.

II. Implementation: GPSIE

The various FIMLOF-based techniques discussed here have been implemen-
ted in a computer program called the General Purpose System Identifier and
Evaluator (GPSIE). GPSIE is a large precompiled program which links with

a user-written program describing the particular model of interest. The



- 863 -

resulting package can be used to load data, coméute likelihoods via optimal
filtering, search for maxima in the likelihood function, compute the validity
statistics discussed here, and plot the results, GPSIE embodies a large
number of optlons for dealing with special cases and for maintaining efficient
computation in various circumstances. (For more details on GPSIE, see
Peterson, 1974 and 1975).

An obvious concern with iterative methods and statistical analyses is
the threat of high computation costs. GPSIE, for example, imposes no in-
herent 1limits on the model size or data base, but requirements of computer
time or storage may obviously become extravagant for large systems. For
example, the cost of parameter estimation and validity tests for a tenth-
order system with 1000 data polnts would typically fall between $200 and
$300 on a large time~sharing system.

The computational costs of some FIMLOF computations vary with the
cube of the system dimensions. Therefore, it often pays to break the model
into sectors for individual analysis. The sectors may then be recombiﬁed
for final validity testing, requiring but a single filtering computation

with the entire system intact.

I1I. Conclusions

There are two implications of the FIMLOF techniques for the field
of system dynamics. First, the techniques may increase the efficiency and
quality of system dynamics modeling, by complementing the manual simulate-
analyze-correct techniques. Parameter estimation, consistency tests, and
confidence bounds may efficiently indicate areas of sensitiviﬁy or incon-
sistency which might otherwise be found with difficulty. A falled con-
sistency test or unreasonable estimated parameter, furthermore, may not

only reveal the presence of trouble, but also may suggest an appropriate
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remedy in model structure.

Second, the FIMLOF techniques may extend the practice of system
dynamics into additiomal fields and disciplines. As techniques such as
FIMLOF become more widely understood and available, system-dynamics type
models may be employed more often for data-related activities, including

forecasting, data validation, and performance monitoring.
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Appendix A:

Mathematical Definitions

This appendix 1s for the benefit of the mathematically inclined reader.
It summarizes the equations of the FIMLOF techniques discussed qualitatively
in the text. Section A.1 defines the notation of the model, its relation-
ship to data, its uncertainty, and tte linearization of the model. Section
A.2 gives the equations of the optimal filter and the accompenying likeli-
hood calculation. Section A.3 gilves the equations for two of the confi-~
dence tests discussed in the text. Finally, Section A.4 summarizes the
techniques of bad-data detection. For wmore details on bad-data detection,

See Peterson (1975).

A.1 System Dynamics and Linearization

State Equations: X(nh) = f(.l(y.—l)’ u(n}, win), ]
Measurement Equations: Z(n)= h [_)S(n) ,¥(m, n ]
Index of Data Samples: A = 1, 1. ... N
. *
Initial Conditions: X (0) = N [’So ' Y]

*
Equation Errors (Driving Noise): \/_\_J(n\ ® N[Q » _Q_-(’\\]

Measurement Errors: !(n\ = N [2 , B_ (")] *

* N[m,c] denotes a normal, white process with mean m and covariance matric c.
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Linearization about Estimated State:

E(n\

=

———

dx

X = X(nifn-n)
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A.2 TFilter Equations

Predicted State: X(n[n-1) = f[l?("" In-1), 4, 2) n]
Predicted Measurement: 2 (n|n-1) = A [S(hlﬂ"), g, n ]
Residvals: $_ (n|n-1) = 5("‘,' é(n,n-»)

Predicted State

~ o~ ~
Covariance: Zx(h,h—l\ = E(n) Zx(h-lln-l)_’:(h) + Q(")

Predicted Measuremen ot ~ I ~
Covart:iance: t Zl(n in- \\ = H(N)ZX(" In-1 t‘(") -+ & (n)

Normalized Prédicted

» - -1
Measurement Residuals: _B_z(h‘h"\ = Zz(n '“"\) —52 {h[h‘l\

Updated State

-1 ~7 ST o~
Covariance: Zx(n [~ = [_Z_x (nfn-2\ *+ _}j_ {(n) B(’l) _H(h)]

Filter Cain: },S(h\= Zx(hln_,) _H_ (n) Z; (V\ln"l\

Updated State . -~
sscimace: £(nln) = X(nln-1) + K(n) §, (nln-1)
Log Likelohood: E(n\ = g(nq) ‘*2% .S;("'“") -S-.Z (hlh-l)

_.;:_-In{rzz(n[n—n),} »
Initial Conditions:

Rol)= %, , 2, (el)=Y | £6)=0
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A.3 Confidence Tests

Residual Correlation Matrices:

N-y
1 ~ ) o~/
80— D & (nln-1) 5, (nej [n+j-1)

LA ]
If model and deta are consistent, then R(0)4 I (identity matrix), and

R0, 3 # 0.

SUMSQ Statistic:
N - g
SUMSQ = Z éz (hlh'l\ __z(n'n-l)
nsy
The expected value of SUMSQ is equal to the total number of scalar
data points, minus the number of unknown pzrameters. The standard devia~

tion of SUMSQ is equal to the square root of twice 1its expected value.
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A.4 Bad-Data Detection

Normalized Updated Measurement Residuals (NUMR):

. Vi~ oy .
ronin) = [diag {2 twin-n} ] Rty [200-2(nin)]

Normalized Updated State Residuals (NUSR):

- - ~ o
£, (nln) = [diag {r_iin;g;(n;n-.) ﬂ(n)}] Zx (nin-0) [Elnin-1) "g(nlh\]

The NUMR and NUSR processes interact with each other, and must be con-

sidered togather. They have two useful properties:

1. First,-both NUMR and NUSR have constant unit variance. That is,
each component of NUMR and NUSR has a constant standard deviation
of one, under all circumstances, as long as the model is valid
and the data conforms to the model. Therefore, onebor more
components of NUMR and NUSR with absolute value greater than 3 or
4 is a reliable sign of a bad data point scmewhere at the
corresponding sample time. '

2. 1In addition, Peterson (1975) has shown that, at a sample time
involving a bad data point, the component of NUMR or NUSR with ‘
the maximum absolute value corresponds to the compqnent«ofvg(n)
or x(n) which is in error. For example, a typograrhical error
in the first component of z(3) may, depending on the model
structure, cause several components of both gz(n/n) and Ex(“/“)
to exceed the acceptable limit for example, 4). But the component
with the largest absolute value identifies the specific component
of z(3) or x(3) which contains the typographical efrot. (In the
case of x(n), the error might be in an exogenous input to the

equation determining the component of x(n)). These properties
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of NUMR and NUSR permit the creation of computer programs

which automatically identify and delete bad data points,

and the efficient screening of data sets for questionable
entries. As shown by Peterson (1975), they can also be help-

ful in model validation and model improvement.
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